
1

Project report

On

Multiplication Algorithms Using VHDL

This project report is submitted

In fulfillment of the requirement for the award of degree of

“B.E. Electronics and Communication”

Submitted by

Chaitanya Kukde (59)

Navoneel Das Gupta (78)

Rituraj Kawale (85)

Yash Patkar (93)

Under the guidance of

Prof.Anish Goel

Department Of Electronics and Communication,

Shri Ramdeobaba College Of Engineering and Management,

Nagpur-440013
(An Autonomous College Of Rashtrasant Tukadoji Maharaj Nagpur University)

2014-2015

2

Shri Ramdeobaba College Of Engineering and Management,

Nagpur-440013

(An Autonomous College Of Rashtrasant Tukadoji

Maharaj Nagpur University)

2014-2015

Department Of Electronics And Communication

Certificate

This is to certify that the project report titled Implementation of

Multiplication Algorithms using VHDL is a bonafide work done by

the following students as a partial fulfillment of requirement for the

award of Degree in Bachelors Of Electronics and Communications

Engineering of R.T.M.N.U University for the year 2013-2014.

Submitted by

Chaitanya Kukde (59)

Navoneel Das Gupta (78)

Rituraj Kawale (85)

Yash Patkar (93)

 Prof. Anish Goel Dr. S. B. Pokle Dr. R. S. Pande

 (Project guide) (H.O.D-EC) (Principal)

3

ACKNOWLEDGEMENT

It is indeed a pleasure for us to express our deep sense of gratitude

towards our project guides Prof. Anish Goel whose enthusiasm was a source of

inspiration for us . It is because of her , that we could synchronise our efforts in

covering the manifold facets of our project .

We express our heartfelt thanks to Dr S. B. Pokle, HOD EC Dept., who

ensured that we completed this project smoothly by providing us access to the

lab , after college hours , and also helping us with certain technical aspects of the

project .

Lastly, our deep regards to all those who directly or indirectly helped us the completion

of the project.

PROJECTEES

 Chaitanya Kukde

 Navoneel Das Gupta

 Rituraj Kawale

 Yash Patkar

4

INDEX

Chapter 1: Introduction

1. Introduction Multipliers

2. VHDL

3. Aim and Objective

Chapter 2: Components

1. Half adder

2. Full adder

3. Subtractor

Chapter 3: Software

1.Modelsim

a. Features

b. How to use Modelsim

2. Xilinx ISE

 a. User Interface

 b. Simulation

 c. Synthesis

Chapter 4: Algorithms

1. Wallace Tree Multiplier

2. Karatsuba Multiplier

5

Chapter 5: VHDL Codes

1. WALLACE TREE MULTIPLIER

a. Main Multiplier

b. Full Adder

c. Half Adder

2. KARATSUBA TREE MULTIPLIER

a. Main Multiplier

b. 4-bit Ripple Carry Adder

c. Component for concatenating carries

d. 4-bit Multiplier

e. 5-bit multiplier

f. Full Adder

g. 16-bit adder

h. 10-bit subtractor

Chapter 6: APPLICATIONS

REFERENCES

6

ABSTRACT

A Binary multiplier is an integral part of the arithmetic logic unit

(ALU) subsystem found in many processors. Integer multiplication can be

inefficient and costly, in time and hardware, depending on the representation

of numbers. Karatsuba algorithm and others like Wallace-Tree suggest

techniques for multiplying signed numbers that works equally well for

efficient multiplication.

 In this project, we have used VHDL as a HDL and Mentor

Graphics Tools (MODEL-SIM) for describing and verifying a hardware

design based on Booth's and some other efficient algorithms. Instead of

writing TestBenches & Test-Cases we used Wave-Form Analyzer which can

give a better understanding of Signals & variables and also proved a good

choice for simulation of design.

7

CHAPTER 1

8

Introduction

Although computer arithmetic is sometimes viewed as a specialized part of

CPU design, still the discrete component designing is also a very important

aspect. A tremendous variety of algorithms have been proposed for use in

floating-point systems. Actual implementations are usually based on

refinements and variations of the few basic algorithms presented here. In

addition to choosing algorithms for addition, subtraction .multiplication, and

division, the computer architect must make other choices.

Multipliers play an important role in today’s digital signal processing and

various other applications in high performance systems such as

microprocessor, DSP etc addition and multiplication of two binary numbers

is fundamental and most often used arithmetic operations. Statics shows that

more than 70% instructions in microprocessor and most of DSP algorithms

perform addition and multiplication. So, this operation dominates the

execution time. That’s why there is need of high speed multiplier. The

demand of high speed processing has been increasing as a result of

expanding computer and signal processing applications. Low power

consumption is also an important issue in multiplier design. To reduce

significant power consumption it is good to reduce the number of operation

thereby reducing dynamic power which is a major part of total power

consumption so the need of high speed and low power multiplier has

increased. Designers mainly concentrate on high speed and low power

efficient circuit design. The objective of a good multiplier is to provide a

physically packed together, high speed and low power consumption unit.

9

Multiplications are very expensive and slow the overall operation. The

performances of many computational problems are often dominated by the

speed at which a multiplication operation can be executed.

Consider two unsigned binary numbers X and Y that are M and N bits wide,

respectively. To introduce the multiplication operation, it is useful to express

X and Y in the binary representation.

The simplest way to perform a multiplication is to use a single two input

adder. For inputs that are M and N bits wide, the multiplication tasks M

cycles, using an N-bit adder. This shift –and-add algorithm for

multiplication adds together M partial products. Each partial product is

generated by multiplying the multiplicand with a bit of the multiplier –

which, essentially, is an AND operation – and by shifting the result in the

basis of the multiplier bit’s position. Similar to the familiar long hand

decimal multiplication, binary multiplication involves the addition of shifted

versions of the multiplicand based on the value and position of each of the

multiplier bits. As a matter of fact, it’s much simpler to perform binary

multiplication than decimal multiplication. The value of each digit of a

binary number can only be 0 or 1, thus, depending on the value of the

multiplier bit, the partial products can only be a copy of the multiplicand, or

0. In digital logic, this is simply an AND function. A faster way to

implement multiplication is to resort to an approach similar to manually

computing a multiplication. The entire partial product are generated at the

same time and organized in an array. A multi-operand addition is applied to

compute the final product. So the adder unit is very important for designing

any multiplier

An efficient multiplier should have following characteristics:-

10

 Accuracy:- A good multiplier should give correct result.

 Speed:- Multiplier should perform operation at high speed.

 Area:- A multiplier should occupies less number of slices and LUTs.

Power: - Multiplier should consume less power.

There are different types of multiplier such as:-

 1. Booth multiplier.

 2. Combinational multiplier.

 3. Wallace tree multiplier.

 4. Array multiplier.

 5. Sequential multiplier.

11

VHDL

The VHSIC (very high speed integrated circuits) Hardware Description

Language (VHDL) was first proposed in 1981. The development of VHDL

was originated by IBM, Texas Instruments, and Inter-metrics in 1983. The

result, contributed by many participating EDA (Electronics Design

Automation) groups, was adopted as the IEEE 1076 standard in December

1987.

VHDL is intended to provide a tool that can be used by the digital systems

community to distribute their designs in a standard format. Using VHDL,

they are able to talk to each other about their complex digital circuits in a

common language without difficulties of revealing technical details.

As a standard description of digital systems, VHDL is used as input and

output to various simulation, synthesis, and layout tools. The language

provides the ability to describe systems, networks, and components at a very

high behavioral level as well as very low gate level. It also represents a top-

down methodology and environment.

Simulations can be carried out at any level from a generally functional

analysis to a very detailed gate-level wave form analysis.

Many DSP applications demand high throughput and real-time response,

performance constraints that often dictate unique architectures with high

levels of concurrency. DSP designers need the capability to manipulate and

evaluate complex algorithms to extract the necessary level of concurrency.

12

Performance constraints can also be addressed by applying alternative

technologies. A change at the implementation level of design by the

insertion of a new technology can often make viable an existing marginal

algorithm or architecture. The VHDL language supports these modeling

needs at the algorithm or behavioral level, and at the implementation or

structural level. It provides a versatile set of description facilities to model

DSP circuits from the system level to the gate level. Recently, we have also

noticed efforts to include circuit-level modeling in VHDL. At the system

level we can build behavioral models to describe algorithms and

architectures. We would use concurrent processes with constructs common

to many high-level languages, such as if, case, loop, wait, and assert

statements. VHDL also includes user-defined types, functions, procedures,

and packages." In many respects VHDL is a very powerful, high-level,

concurrent programming language.

At the implementation level we can build structural models using component

instantiation statements that connect and invoke subcomponents. The VHDL

generate statement provides ease of block replication and control. A

dataflow level of description offers a combination of the behavioral and

structural levels of description. VHDL lets us use all three levels to describe

a single component. Most importantly, the standardization of VHDL has

spurred the development of model libraries and design and development

tools at every level of abstraction. VHDL, as a consensus description

language and design environment, offers design tool portability, easy

technical exchange, and technology insertion

13

Aim and Objective

The aim of this project is to design and implement the multiplier that takes

less time using fast multiplication techniques. In today’s scenario the

multipliers with advance features are available that consume less power and

less area. There has been extensive work on low-power multipliers at

technology, physical, circuit and logic levels. The systems performance is

based on speed, power and the area. Hence optimizing the speed is major

design issue.

In this project, the implementation of multiplication using FPGA-Based

computing platform will be done. Because the highly parallel nature of

matrix multiplication it makes an ideal application for using such platform.

The computations are done in parallel by multipliers and adders. In our

approach, we will adopt the software/hardware co-design. Our multiplier

will be modeled in VHDL.

The purely software implementation of matrix multiplication will be

accomplished. Observation of the matrix multiplication equations shows that

the multiplications can be performed concurrently, and then the additions

can be performed concurrently. This parallelism can be exploited to increase

processing speed.

There are various techniques or we can say algorithms that can be used for

fast multiplication process they as follows:-

14

CHAPTER 2

15

Components

 In electronics, an adder is a digital circuit that performs addition of

numbers. In modern computers adders reside in the arithmetic logic unit

(ALU) where other operations are performed. Although adders can be

constructed for many numerical representations, such as Binary-coded

decimal or excess-3, the most common adders operate on binary numbers. In

cases where two's complement is being used to represent negative numbers

it is trivial to modify an adder into an adder-subtracter

Types of adders

 For single bit adders, there are two general types.

 A half adder has two inputs, generally labeled A and B, and two outputs, the

sum S and carry C. S is the two-bit XOR of A and B, and C is the AND of A

and B. Essentially the output of a half adder is the sum of two one-bit

numbers, with C being the most significant of these two outputs. The second

type of single bit adder is the full adder.

 The full adder takes into account a carry input such that multiple adders can

be used to add larger numbers. To remove ambiguity between the input and

output carry lines, the carry in is labeled Ci or Cin while the carry out is

labeled Co or Cout.

16

Half adder

A half adder is a logical circuit that performs an addition operation on two

binary digits. The half adder produces a sum and a carry value which are

both binary digits.

 S= A XOR B;

 C=A AND B;

17

Full adder

Inputs: {A, B, Carry In} → Outputs: {Sum, Carry Out}

A full adder is a logical circuit that performs an addition operation on three

binary digits. The full adder produces a sum and carries value, which are

both binary digits. It can be combined with other full adders (see below) or

work on its own.

18

Note that the final OR gate before the carry-out output may be replaced by

an XOR gate without altering the resulting logic. This is because the only

discrepancy between OR and XOR gates occurs when both inputs are 1; for

the adder shown here, one can check this is never possible. Using only two

types of gates is convenient if one desires to implement the adder directly

using common IC chips. A full adder can be constructed from two half

adders by connecting A and B to the input of one half adder, connecting the

sum from that to an input to the second adder, connecting Ci to the other

input and or the two carry outputs. Equivalently, S could be made the three-

bit xor of A, B, and Ci and Co could be made the three-bit majority function

of A, B, and Ci . The output of the full adder is the two-bit arithmetic sum of

three one-bit numbers

19

Subtractor

The full-subtractor is a combinational circuit which is used to perform

subtraction of three bits. It has three inputs, X (minuend) and Y (subtrahend)

and Z (subtrahend) and two outputs D (difference) and B (borrow).

D=X-Y-Z (don't bother about sign)

B = 1 If X<(Y+Z)

The truth table for the full subtractor is given below.

X Y Z D B

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

So, Logic equations are:

20

CHAPTER 3

21

SOFTWARE

ModelSim

Mentor Graphics was the first to combine single kernel simulator (SKS)

technology with a unified debug environment for Verilog, VHDL, and

SystemC. The combination of industry-leading, native SKS performance

with the best integrated debug and analysis environment

make ModelSim® the simulator of choice for both ASIC and FPGA designs.

The best standards and platform support in the industry make it easy to adopt

in the majority of process and tool flows.

Features:

Advanced Code Coverage:

ModelSim’s advanced code coverage capabilities and ease of use lower the

barriers for leveraging this valuable verification resource.

The ModelSim advanced code coverage capabilities provide valuable

metrics for systematic verification. All coverage information is stored in the

Unified Coverage DataBase (UCDB), which is used to collect and manage

all coverage information in a highly efficient database. Coverage utilities

that analyze code coverage data, such as merging and test ranking, are

available. Coverage results can be viewed interactively, post-simulation, or

after a merge of multiple simulation runs. Code coverage metrics can be

reported by instance or by design unit, providing flexibility in managing

coverage data.

The coverage types supported include:

22

 Statement coverage: number of statements executed during a run

 Branch coverage: expressions and case statements that affect the

control flow of the HDL execution

 Condition coverage: breaks down the condition on a branch into

elements that make the result true or false

 Expression coverage: the same as condition coverage, but covers

concurrent signal assignments instead of branch decisions

 Focused expression coverage:presents expression coverage data in a

manner that accounts for each independent input to the expression in

determining coverage results

 Enhanced toggle coverage: in default mode, counts low-to-high and

high-to-low transitions; in extended mode, counts transitions to and

from X

 Finite State Machine coverage: state and state transition coverage

Mixed HDL Simulation

ModelSim combines simulation performance and capacity with the code

coverage and debugging capabilities required to simulate multiple blocks

and systems and attain ASIC gate-level sign-off. Comprehensive support of

Verilog, System Verilog for Design, VHDL, and SystemC provide a solid

foundation for single and multi-language design verification environments.

ModelSim’s easy to use and unified debug and simulation environment

provide today’s FPGA designers both the advanced capabilities that they are

growing to need and the environment that makes their work productive..

23

Effective Debug Environment:

The ModelSim debug environment’s broad set of intuitive capabilities for

Verilog, VHDL, and SystemC make it the choice for ASIC and FPGA

design.

ModelSim eases the process of finding design defects with an intelligently

engineered debug environment. The ModelSim debug environment

efficiently displays design data for analysis and debug of all languages.

ModelSim allows many debug and analysis capabilities to be employed

post-simulation on saved results, as well as during live simulation runs. For

example, the coverage viewer analyzes and annotates source code with code

coverage results, including FSM state and transition, statement, expression,

branch, and toggle coverage.

Signal values can be annotated in the source window and viewed in the

waveform viewer, easing debug navigation with hyperlinked navigation

between objects and its declaration and between visited files.

Race conditions, delta, and event activity can be analyzed in the list and

wave windows. User-defined enumeration values can be easily defined for

quicker understanding of simulation results. For improved debug

productivity, ModelSim also has graphical and textual dataflow capabilities.

24

How To Use Modelsim

1.Open modelsim software

2.Creat New project

25

3.Creat project file

4.Double click on file name,it will open work space

26

5.Write the codes

6.Compile the file: Select the file :Right click on it: Go to compile and select compile

27

7 Go to Simulate. And click on Start simulation

8.Adding wave to signal

28

9.Now Force the input signal value.

10.Click on Run and get the output

29

XILINX ISE

Xilinx ISE (Integrated Synthesis Environment) is a software tool produced

by Xilinx for synthesis and analysis of HDL designs, enabling the developer

to synthesize ("compile") their designs, perform timing analysis, examine

RTL diagrams, simulate a design's reaction to different stimuli, and

configure the target device with the programmer.

The Xilinx ISE is a design environment for FPGA products from Xilinx, and

is tightly-coupled to the architecture of such chips, and cannot be used with

FPGA products from other vendors.The Xilinx ISE is primarily used for

circuit synthesis and design, while the ModelSim logic simulator is used for

system-level testing. Other components shipped with the Xilinx ISE include

the Embedded Development Kit (EDK), a Software Development Kit (SDK)

and ChipScope Pro.

User Interface

The primary user interface of the ISE is the Project Navigator, which

includes the design hierarchy (Sources), a source code editor (Workplace),

an output console (Transcript), and a processes tree (Processes).

The Design hierarchy consists of design files (modules), whose

dependencies are interpreted by the ISE and displayed as a tree structure.For

single-chip designs there may be one main module, with other modules

included by the main module, similar to the main() subroutine

in C++ programs. Design constraints are specified in modules, which

include pin configuration and mapping.

http://en.wikipedia.org/wiki/ModelSim
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/C%2B%2B

30

The Processes hierarchy describes the operations that the ISE will perform

on the currently active module. The hierarchy includes compilation

functions, their dependency functions, and other utilities. The window also

denotes issues or errors that arise with each function.

The Transcript window provides status of currently running operations, and

informs engineers on design issues. Such issues may be filtered to show

Warnings, Errors, or both.

Simulation

System-level testing may be performed with the ModelSim logic simulator,

and such test programs must also be written in HDL languages. Test bench

programs may include simulated input signal waveforms, or monitors which

observe and verify the outputs of the device under test.

ModelSim may be used to perform the following types of simulations:

 Logical verification, to ensure the module produces expected results

 Behavioural verification, to verify logical and timing issues

 Post-place & route simulation, to verify behaviour after placement of

the module within the reconfigurable logic of the FPGA

Synthesis

Xilinx's patented algorithm for synthesis allow designs to run upto 30%

faster than competing programs, and allows greater logic density which

reduces project costs.

Also, due to the increasing complexity of FPGA fabric, including memory

blocks and I/O blocks, more complex synthesis algorithms were developed

that separate unrelated modules into slices, reducing post-placement errors.

http://en.wikipedia.org/wiki/ModelSim
http://en.wikipedia.org/wiki/Device_under_test
http://en.wikipedia.org/wiki/ModelSim

31

IP Cores are offered by Xilinx and other third-party vendors, to implement

system-level functions such as digital signal processing (DSP), bus

interfaces, networking protocols, image processing, embedded processors,

and peripherals.Xilinx has been instrumental in shifting designs from ASIC-

based implementation to FPGA-based implementation.

http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Soft_microprocessor

32

CHAPTER 4

33

ALGORITHMS IMPLEMENTED

Wallace Tree Multiplier

Introduction

A Wallace tree is an efficient hardware implementation of a digital circuit

that multiplies two integers, devised by Australian Computer Scientist Chris

Wallace in 1964.

The Wallace tree has three steps:

1. Multiply (that is - AND) each bit of one of the arguments, by each bit

of the other, yielding results. Depending on position of the

multiplied bits, the wires carry different weights, for example wire of

bit carrying result of is 32 (see explanation of weights below).

2. Reduce the number of partial products to two by layers of full and half

adders.

3. Group the wires in two numbers, and add them with a

conventional adder.

The second phase works as follows. As long as there are three or more wires

with the same weight add a following layer:

 Take any three wires with the same weights and input them into a full

adder. The result will be an output wire of the same weight and an

output wire with a higher weight for each three input wires.

 If there are two wires of the same weight left, input them into a half

adder.

 If there is just one wire left, connect it to the next layer.

34

The benefit of the Wallace tree is that there are only reduction

layers, and each layer has propagation delay. As making the partial

products is and the final addition is , the multiplication is

only , not much slower than addition (however, much more

expensive in the gate count). Naively adding partial products with regular

adders would require time. From a complexity

theoretic perspective, the Wallace tree algorithm puts multiplication in the

class NC.

These computations only consider gate delays and don't deal with wire

delays, which can also be very substantial.

The Wallace tree can be also represented by a tree of 3/2 or 4/2 adders. It is

sometimes combined with Booth encoding.

35

Generic Example

For ,

multiplying by :

1. First we multiply every bit by every bit:

 weight 1 -

 weight 2 - ,

 weight 4 - , ,

 weight 8 - , , ,

 weight 16 - , ,

 weight 32 - ,

 weight 64 -

2. Reduction layer 1:

 Pass the only weight-1 wire through, output: 1 weight-1 wire

 Add a half adder for weight 2, outputs: 1 weight-2 wire, 1

weight-4 wire

 Add a full adder for weight 4, outputs: 1 weight-4 wire, 1

weight-8 wire

 Add a full adder for weight 8, and pass the remaining wire

through, outputs: 2 weight-8 wires, 1 weight-16 wire

 Add a full adder for weight 16, outputs: 1 weight-16 wire, 1

weight-32 wire

36

 Add a half adder for weight 32, outputs: 1 weight-32 wire, 1

weight-64 wire

 Pass the only weight-64 wire through, output: 1 weight-64 wire

3. Wires at the output of reduction layer 1:

 weight 1 - 1

 weight 2 - 1

 weight 4 - 2

 weight 8 - 3

 weight 16 - 2

 weight 32 - 2

 weight 64 - 2

4. Reduction layer 2:

 Add a full adder for weight 8, and half adders for weights 4, 16,

32, 64

5. Outputs:

 weight 1 - 1

 weight 2 - 1

 weight 4 - 1

 weight 8 - 2

 weight 16 - 2

37

 weight 32 - 2

 weight 64 - 2

 weight 128 - 1

6. Group the wires into a pair integers and an adder to add them

Wallace Multiplier Intermediate Stage

38

Final Stage of Wallace Tree Multiplier

39

Karatsuba Multiplier

The Karatsuba algorithm is a fast multiplication algorithm. It was discovered

by Anatolii Alexeevitch Karatsuba in 1960 and published in 1962. It reduces

the multiplication of two n-digit numbers to at most single-

digit multiplications in general (and exactly when n is a power of 2).

It is therefore faster than the classical multiplication algorithm, which

requires n
2
 single-digit products.

For example, the Karatsuba algorithm requires 3
10

 = 59,049 single-digit

multiplications to multiply two 1024-digit numbers (n = 1024 = 2
10

),

whereas the classical algorithm requires (2
10

)
2
 = 1,048,576.

The Karatsuba algorithm was the first multiplication algorithm

asymptotically faster than the quadratic "grade school" algorithm.

The Toom–Cook algorithm is a faster generalization of Karatsuba's method,

and the Schönhage–Strassen algorithm is even faster, for sufficiently large n.

Basic steps of algorithm

The basic step of Karatsuba's algorithm is a formula that allows us to

compute the product of two large numbers and using three

multiplications of smaller numbers, each with about half as many digits as

 or , plus some additions and digit shifts.

Let and be represented as -digit strings in some base . For any

positive integer less than , one can write the two given numbers as

,

40

where and are less than . The product is then

where

These formulae require four multiplications, and were known to Charles

Babbage. Karatsuba observed that can be computed in only three

multiplications, at the cost of a few extra additions. With and as before

we can calculate

which holds since

A more efficient implementation of Karatsuba multiplication can be set as

 ,

 where is the power where the split occurs of .

41

Example

To compute the product of 12345 and 6789, choose B = 10 and m = 3. Then

we decompose the input operands using the resulting base (B
m
 = 1000), as:

12345 = 12 · 1000 + 345

6789 = 6 · 1000 + 789

Only three multiplications, which operate on smaller integers, are used to

compute three partial results:

z2 = 12 × 6 = 72

z0 = 345 × 789 = 272205

z1 = (12 + 345) × (6 + 789) − z2 − z0 = 357 × 795 − 72 − 272205 = 283815 −

72 − 272205 = 11538

We get the result by just adding these three partial results, shifted

accordingly (and then taking carries into account by decomposing these

three inputs in base 1000 like for the input operands):

result = z2 · B
2m

 + z1 · B
m
 + z0, i.e.

result = 72 · 1000
2
 + 11538 · 1000 + 272205 = 83810205.

Note that the intermediate third multiplication operates on an input domain

which is less than twice larger than for the two first multiplications, its

output domain is less than four times larger, and base-1000 carries computed

from the first two multiplications must be taken into account when

computing these two subtractions; but note also that this partial

result z1 cannot be negative: to compute these subtractions, equivalent

42

additions using complements to 1000
2
 can also be used, keeping only the

two least significant base-1000digits for each number:

z1 = 283815 − 72 − 272205 = (283815 + 999928 + 727795) mod 1000
2
 =

2011538 mod 1000
2
 = 11538.

43

CHAPTER 5

44

VHDL CODES FOR MULTIPLIER

WALLACE TREE MULTIPLIER

MAIN MULTIPLIER

library ieee;

use ieee.std_logic_1164.all;

entity treeWallace is

 Port (A, B : in STD_LOGIC_VECTOR (3 downto 0);

 PROD : out STD_LOGIC_VECTOR (7 downto 0));

end treeWallace;

architecture multiplier of treeWallace is

--component Half Adder for instances where two partial products are to be

added

component WFULLADD is

Port(a, b, cin : in STD_LOGIC;

 sum, carry : out STD_LOGIC);

end component;

--component Full Adder for instances where more than two partial products

are to be added

component WHALFADD is

45

Port(a, b : in STD_LOGIC;

 sum, carry : out STD_LOGIC);

end component;

signal s11,s12,s13,s14,s15,s22,s23,s24,s25,s26,s32,s34,s35,s36,s37 :

STD_LOGIC;

signal c11,c12,c13,c14,c15,c22,c23,c24,c25,c26,c32,c34,c35,c36,c37 :

STD_LOGIC;

signal p0,p1,p2,p3 : STD_LOGIC_VECTOR(3 downto 0);

begin

process(A,B)

begin

--partial products generation stage

--here each bit of each binary multiplicand is multiplied by the other

--thus we have n
2
 bits

for i in 0 to 3 loop

p0(i)<=A(i) and B(0);

p1(i)<=A(i) and B(1);

p2(i)<=A(i) and B(2);

p3(i)<=A(i) and B(3);

end loop;

end process;

46

--first partial products reduction stage

ha11 : WHALFADD port map(p0(1),p1(0),s11,c11);

fa12 : WFULLADD port map(p0(2),p1(1),p2(0),s12,c12);

fa13 : WFULLADD port map(p0(3),p1(2),p2(1),s13,c13);

fa14 : WFULLADD port map(p1(3),p2(2),p3(1),s14,c14);

ha15 : WHALFADD port map(p2(3),p3(2),s15,c15);

--second partial products reduction stage

ha22 : WHALFADD port map(c11,s12,s22,c22);

fa23 : WFULLADD port map(p3(0),c12,s13,s23,c23);

fa24 : WFULLADD port map(c13,c32,s14,s24,c24);

fa25 : WFULLADD port map(c14,c24,s15,s25,c25);

fa26 : WFULLADD port map(c15,c25,p3(3),s26,c26);

--third partial products reduction stage

ha32 : WHALFADD port map(c22,s23,s32,c32);

ha34 : WHALFADD port map(c23,s24,s34,c34);

ha35 : WHALFADD port map(c34,s25,s35,c35);

ha36 : WHALFADD port map(c35,s26,s36,c36);

ha37 : WHALFADD port map(c36,c26,s37,c37);

---final mapping

PROD(0)<=p0(0);

PROD(1)<=s11;

PROD(2)<=s22;

PROD(3)<=s32;

PROD(4)<=s34;

PROD(5)<=s35;

47

PROD(6)<=s36;

PROD(7)<=s37;

end multiplier;

FULL ADDER

library ieee;

use ieee.std_logic_1164.all;

entity WFULLADD is

port(a,b,cin: in STD_LOGIC;

 sum,carry: out STD_LOGIC);

end WFULLADD;

architecture fulladd of WFULLADD is

 begin

 sum <= (a AND b) OR (b AND cin) OR (a AND cin);

 carry <= a XOR b XOR cin;

end fulladd;

48

HALF ADDER

library ieee;

use ieee.std_logic_1164.all;

entity WHALFADD is

port(a,b: in STD_LOGIC;

 sum,carry: out STD_LOGIC);

end WHALFADD;

architecture halfadd of WHALFADD is

begin

 sum <= a XOR b;

 carry <= a AND b;

end halfadd;

49

KARATSUBA TREE MULTIPLIER

MAIN MULTIPLIER

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity karatsuba_multiplier_even is

port (

 a, b: in std_logic_vector(7 downto 0);

 d: out std_logic_vector(15 downto 0)

);

end karatsuba_multiplier_even;

architecture simple of karatsuba_multiplier_even is

 component Multiplier_VHDL is

 port

 (

 Nibble1, Nibble2: in std_logic_vector(3 downto 0);

 Result: out std_logic_vector(7 downto 0)

);

 end component;

50

 component Multiplier_VHDL1 is

 port

 (

 Nibble1, Nibble2: in std_logic_vector(4 downto 0);

 Result: out std_logic_vector(9 downto 0)

);

end component;

 component test1 is

 port(a,b:in std_logic_vector(3 downto 0);

 s:out std_logic_vector(4 downto 0)

);

 end component;

 component subtr is

 port(A,B : in std_logic_vector(9 downto 0);

 RES : out std_logic_vector(9 downto 0));

 end component;

 component adr16 is

 port(A,B : in std_logic_vector(15 downto 0);

 RES : out std_logic_vector(15 downto 0));

end component;

 signal x0y0,x1y1: std_logic_vector(7 downto 0);

 signal x01y01: std_logic_vector(9 downto 0);

51

 signal x0_p_X1, y0_p_y1: std_logic_vector(4 downto 0);

 signal x0y0a, x1y1a, res1, res2: std_logic_vector(9 downto 0);

 signal h, i, l, res3, res4: std_logic_vector(15 downto 0):=(others=>'0');

begin

 mult1: Multiplier_VHDL

 port map(a(3 downto 0), b(3 downto 0), x0y0);

 mult2: Multiplier_VHDL

 port map(a(7 downto 4), b(7 downto 4), x1y1);

 mult3: Multiplier_VHDL1

 port map(x0_p_X1, y0_p_y1, x01y01);

 add1: test1

 port map(a(7 downto 4),a(3 downto 0), x0_p_X1);

 add2: test1

 port map(b(7 downto 4),b(3 downto 0), y0_p_y1);

 x1y1a <= "00"&x1y1;

 x0y0a <= "00"&x0y0;

 sub1: subtr

 port map(x01y01,x1y1a,res1);

 sub2: subtr

 port map(res1,x0y0a,res2);

52

 h(15 downto 8) <= x1y1;

 i(13 downto 4) <= res2;

 l(7 downto 0) <= x0y0;

 adr16a: adr16

 port map(h, i, res3);

 adr16b: adr16

 port map(res3, l, res4);

 d <= res4;

 end simple

4-BIT RIPPLE CARRY ADDER

library ieee;

 use ieee.std_logic_1164.all;

 entity rca4 is

 port(a,b:in std_logic_vector(3 downto 0);

 cin:in std_logic;

 s:out std_logic_vector(3 downto 0);

 cout:out std_logic);

 end rca4;

architecture struct of rca4 is

 signal c1,c2,c3:std_logic;

 component full is

53

 port(a,b,cin:in std_logic;

 s,cout:out std_logic);

 end component;

 begin

 fa1:full port map(a(0),b(0),cin,s(0),c1);

 fa2:full port map(a(1),b(1),c1,s(1),c2);

 fa3:full port map(a(2),b(2),c2,s(2),c3);

 fa4:full port map(a(3),b(3),c3,s(3),cout);

 end struct;

COMPONENT FOR CONCATENATING CARRIES

library ieee;

 use ieee.std_logic_1164.all;

 entity test1 is

 port (a,b:in std_logic_vector(3 downto 0);

 s:out std_logic_vector(4 downto 0);

 end test1;

architecture struct of test1 is

 signal c1:std_logic_vector(3 downto 0);

 signal c2:std_logic;

 component rca4 is

 port(a,b: in std_logic_vector(3 downto 0);

 cin: in std_logic;

 s: out std_logic_vector(3 downto 0);

 cout: out std_logic);

 end component;

54

 begin

 rca1: rca4 port map(a,b,'0',c1,c2);

 s <= c2&c1;

 end struct;

4-BIT MULTIPIERS

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity Multiplier_VHDL is

 port

 (

 Nibble1, Nibble2: in std_logic_vector(3 downto 0);

 Result: out std_logic_vector(7 downto 0)

);

end entity Multiplier_VHDL;

architecture Behavioral of Multiplier_VHDL is

begin

 Result <= std_logic_vector(unsigned(Nibble1) * unsigned(Nibble2));

end architecture Behavioral;

55

5-BIT MULTIPLIER

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity Multiplier_VHDL1 is

 port

 (

 Nibble1, Nibble2: in std_logic_vector(4 downto 0);

 Result: out std_logic_vector(9 downto 0)

);

end entity Multiplier_VHDL1;

architecture Behavioral of Multiplier_VHDL1 is

begin

 Result <= std_logic_vector(unsigned(Nibble1) * unsigned(Nibble2));

end architecture Behavioral;

56

FULL ADDER

library ieee;

use ieee.std_logic_1164.all;

entity full is

 port(a,b,cin:in std_logic;

 s,cout:out std_logic);

 end full;

 architecture FA of full is

 begin

 s<= a xor b xor cin;

 cout<=(a and b)or(a and cin)or(b and cin) ;

 end FA;

16-BIT ADDER

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity adr16 is

 port(A,B : in std_logic_vector(15 downto 0);

 RES : out std_logic_vector(15 downto 0));

end adr16;

architecture archi of adr16 is

 begin

 RES <= A + B;

end archi;

57

10-BIT SUBTRACTOR

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity subtr is

 port(A,B : in std_logic_vector(9 downto 0);

 RES : out std_logic_vector(9 downto 0));

end subtr;

architecture archi of subtr is

 begin

 RES <= A - B;

end archi;

58

Simulation output: Wallace Tree Multiplier

Simulation output: Karatsuba Multiplier

59

CHAPTER 6

60

APPLICATIONS

The potential usages of proposed design are -

• High Speed Signal Processing that includes DSP based applications.

• DWT and DCT transforms used for image and wide signal processing.

• FIR and IIR Filters for high speed, low power filtering applications.

• Multirate signal processing applications such as digital down converters

and up converters.

Computers are extremely capable in two broad areas: (1) data manipulation,

such as word processing and database management, and (2) mathematical

calculation, used in science, engineering, and Digital Signal Processing.

However, most computers are not optimized to perform both functions. In

computing applications such as word processing, data must be stored, sorted,

compared, moved, etc., and the time to execute a particular instruction is not

critical, as long as the program’s overall response time to various commands

and operations is adequate enough to satisfy the end user. Occasionally,

mathematical operations may also be performed, as in a spreadsheet or

database program, but speed of execution is generally not the governing

factor. In most general purpose computing applications there is no

concentrated attempt by software companies to make the code efficient.

Application programs are loaded with “features” which require more

memory and faster processors with every new release or upgrade.

61

On the other hand, digital signal processing applications require that

mathematical operations be performed quickly, and the time to execute a

given instruction must be known precisely, and it must be predictable. Both

code and hardware must be extremely efficient to accomplish this. As has

been shown in the last two sections of this book, the most fundamental

mathematical operation or kernel in all of DSP is the sum-of-products (or

dot-product). Fast execution of the dot product is critical to fast Fourier

transforms (FFTs), real time digital filters, matrix multiplications, graphics

pixel manipulation, etc.

Multiplication is an important fundamental function in arithmetic operations.

Multiplication-based operations such as Multiply and Accumulate(MAC)

and inner product are among some of the frequently used computation

Intensive Arithmetic Functions(CIAF) currently implemented in many

Digital Signal Processing (DSP) applications such as convolution, Fast

Fourier Transform(FFT), filtering and in microprocessors m its arithmetic

and logic unit. Since multiplication dominates the execution tune of most

DSP algorithms, so there is a need of high speed multiplier. Currently,

multiplication time is still the dominant factor in determining the instruction

cycle time of a DSP chip. The demand for high speed processing has been

increasing as a result of expanding computer and signal processing

applications. Higher throughput arithmetic operations are important to

achieve the desired performance in many real-time signal and image

processing applications.

62

References

 Text References

 C. S.Wallace, “A suggestion for fast multipliers,” IEEE Trans.

Electron. Comput., no. EC-13, pp. 14–17, Feb. 1964.

 J. Bhasker, A VHDL Primer, Third Edition, Pearson, 1999.

 John. P. Hayes, “Computer Architecture and Organization”, McGraw

Hill, 1998.

Internet Sources

 http://www.researchgate.net/

 http://www.ece.rochester.edu/~parihar/pres/Report_FP-Multipliers.

 http://www.edaboard.com/

 http://stackoverflow.com/

 https://en.wikipedia.org/

http://www.edaboard.com/

