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ABSTRACT 

  

A Binary multiplier is an integral part of the arithmetic logic unit 

(ALU) subsystem found in many processors. Integer multiplication can be 

inefficient and costly, in time and hardware, depending on the representation 

of numbers. Karatsuba algorithm and others like Wallace-Tree suggest 

techniques for multiplying signed numbers that works equally well for 

efficient multiplication. 

 

 In this project, we have used VHDL as a HDL and Mentor 

Graphics Tools (MODEL-SIM ) for describing and verifying a hardware 

design based on Booth's and some other efficient algorithms. Instead of 

writing TestBenches & Test-Cases we used Wave-Form Analyzer which can 

give a better understanding of Signals & variables and also proved a good 

choice for simulation of design.  
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Introduction 

 

Although computer arithmetic is sometimes viewed as a specialized part of 

CPU design, still the discrete component designing is also a very important 

aspect. A tremendous variety of algorithms have been proposed for use in 

floating-point systems. Actual implementations are usually based on 

refinements and variations of the few basic algorithms presented here. In 

addition to choosing algorithms for addition, subtraction .multiplication, and 

division, the computer architect must make other choices.  

 

Multipliers play an important role in today’s digital signal processing and 

various other applications in high performance systems such as 

microprocessor, DSP etc addition and multiplication of two binary numbers 

is fundamental and most often used arithmetic operations. Statics shows that 

more than 70% instructions in microprocessor and most of DSP algorithms 

perform addition and multiplication. So, this operation dominates the 

execution time. That’s why there is need of high speed multiplier. The 

demand of high speed processing has been increasing as a result of 

expanding computer and signal processing applications. Low power 

consumption is also an important issue in multiplier design. To reduce 

significant power consumption it is good to reduce the number of operation 

thereby reducing dynamic power which is a major part of total power 

consumption so the need of high speed and low power multiplier has 

increased. Designers mainly concentrate on high speed and low power 

efficient circuit design. The objective of a good multiplier is to provide a 

physically packed together, high speed and low power consumption unit. 
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Multiplications are very expensive and slow the overall operation. The 

performances of many computational problems are often dominated by the 

speed at which a multiplication operation can be executed.  

Consider two unsigned binary numbers X and Y that are M and N bits wide, 

respectively. To introduce the multiplication operation, it is useful to express 

X and Y in the binary representation.  

 

The simplest way to perform a multiplication is to use a single two input 

adder. For inputs that are M and N bits wide, the multiplication tasks M 

cycles, using an N-bit adder. This shift –and-add algorithm for 

multiplication adds together M partial products. Each partial product is 

generated by multiplying the multiplicand with a bit of the multiplier – 

which, essentially, is an AND operation – and by shifting the result in the 

basis of the multiplier bit’s position. Similar to the familiar long hand 

decimal multiplication, binary multiplication involves the addition of shifted 

versions of the multiplicand based on the value and position of each of the 

multiplier bits. As a matter of fact, it’s much simpler to perform binary 

multiplication than decimal multiplication. The value of each digit of a 

binary number can only be 0 or 1, thus, depending on the value of the 

multiplier bit, the partial products can only be a copy of the multiplicand, or 

0. In digital logic, this is simply an AND function. A faster way to 

implement multiplication is to resort to an approach similar to manually 

computing a multiplication. The entire partial product are generated at the 

same time and organized in an array. A multi-operand addition is applied to 

compute the final product. So the adder unit is very important for designing 

any multiplier 

 

An efficient multiplier should have following characteristics:-  
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 Accuracy:- A good multiplier should give correct result.  

 Speed:- Multiplier should perform operation at high speed. 

 Area:- A multiplier should occupies less number of slices and LUTs. 

Power: - Multiplier should consume less power.  

 

There are different types of multiplier such as:- 

                                                                     1. Booth multiplier.  

                                                                     2. Combinational multiplier.  

                                                                     3. Wallace tree multiplier.  

                                                                     4. Array multiplier. 

                                                                    5. Sequential multiplier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

VHDL 
 

 

 

The VHSIC (very high speed integrated circuits) Hardware Description 

Language (VHDL) was first proposed in 1981. The development of VHDL 

was originated by IBM, Texas Instruments, and Inter-metrics in 1983. The 

result, contributed by many participating EDA (Electronics Design 

Automation) groups, was adopted as the IEEE 1076 standard in December 

1987. 

 

VHDL is intended to provide a tool that can be used by the digital systems 

community to distribute their designs in a standard format. Using VHDL, 

they are able to talk to each other about their complex digital circuits in a 

common language without difficulties of revealing technical details. 

 

As a standard description of digital systems, VHDL is used as input and 

output to various simulation, synthesis, and layout tools. The language 

provides the ability to describe systems, networks, and components at a very 

high behavioral level as well as very low gate level. It also represents a top-

down methodology and environment. 

 

Simulations can be carried out at any level from a generally functional 

analysis to a very detailed gate-level wave form analysis. 

 

Many DSP applications demand high throughput and real-time response, 

performance constraints that often dictate unique architectures with high 

levels of concurrency. DSP designers need the capability to manipulate and 

evaluate complex algorithms to extract the necessary level of concurrency. 
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Performance constraints can also be addressed by applying alternative 

technologies. A change at the implementation level of design by the 

insertion of a new technology can often make viable an existing marginal 

algorithm or architecture. The VHDL language supports these modeling 

needs at the algorithm or behavioral level, and at the implementation or 

structural level. It provides a versatile set of description facilities to model 

DSP circuits from the system level to the gate level. Recently, we have also 

noticed efforts to include circuit-level modeling in VHDL. At the system 

level we can build behavioral models to describe algorithms and 

architectures. We would use concurrent processes with constructs common 

to many high-level languages, such as if, case, loop, wait, and assert 

statements. VHDL also includes user-defined types, functions, procedures, 

and packages." In many respects VHDL is a very powerful, high-level, 

concurrent programming language.  

 

At the implementation level we can build structural models using component 

instantiation statements that connect and invoke subcomponents. The VHDL 

generate statement provides ease of block replication and control. A 

dataflow level of description offers a combination of the behavioral and 

structural levels of description. VHDL lets us use all three levels to describe 

a single component. Most importantly, the standardization of VHDL has 

spurred the development of model libraries and design and development 

tools at every level of abstraction. VHDL, as a consensus description 

language and design environment, offers design tool portability, easy 

technical exchange, and technology insertion 
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Aim and Objective 

 

The aim of this project is to design and implement the multiplier that takes 

less time using fast multiplication techniques.  In today’s scenario the 

multipliers with advance features are available that consume less power and 

less area. There has been extensive work on low-power multipliers at 

technology, physical, circuit and logic levels. The systems performance is 

based on speed, power and the area. Hence optimizing the speed is major 

design issue. 

 

In this project, the implementation of multiplication using FPGA-Based 

computing platform will be done. Because the highly parallel nature of 

matrix multiplication it makes an ideal application for using such platform. 

The computations are done in parallel by multipliers and adders. In our 

approach, we will adopt the software/hardware co-design.  Our multiplier 

will be modeled in VHDL.  

 

The purely software implementation of matrix multiplication will be 

accomplished. Observation of the matrix multiplication equations shows that 

the multiplications can be performed concurrently, and then the additions 

can be performed concurrently. This parallelism can be exploited to increase 

processing speed. 

 

There are various techniques or we can say algorithms that can be used for 

fast multiplication process they as follows:- 
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Components 

 In electronics, an adder is a digital circuit that performs addition of 

numbers. In modern computers adders reside in the arithmetic logic unit 

(ALU) where other operations are performed. Although adders can be 

constructed for many numerical representations, such as Binary-coded 

decimal or excess-3, the most common adders operate on binary numbers. In 

cases where two's complement is being used to represent negative numbers 

it is trivial to modify an adder into an adder-subtracter  

Types of adders 

 For single bit adders, there are two general types. 

 A half adder has two inputs, generally labeled A and B, and two outputs, the 

sum S and carry C. S is the two-bit XOR of A and B, and C is the AND of A 

and B. Essentially the output of a half adder is the sum of two one-bit 

numbers, with C being the most significant of these two outputs. The second 

type of single bit adder is the full adder. 

 The full adder takes into account a carry input such that multiple adders can 

be used to add larger numbers. To remove ambiguity between the input and 

output carry lines, the carry in is labeled Ci or Cin while the carry out is 

labeled Co or Cout. 
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Half adder 

 

 

 

 

 

 

 

 

 

 

A half adder is a logical circuit that performs an addition operation on two 

binary digits. The half adder produces a sum and a carry value which are 

both binary digits. 

   S= A XOR B; 

  C=A AND B; 
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Full adder 

 

 

 

 

 

 

 

 

Inputs: {A, B, Carry In} → Outputs: {Sum, Carry Out} 

 

A full adder is a logical circuit that performs an addition operation on three 

binary digits. The full adder produces a sum and carries value, which are 

both binary digits. It can be combined with other full adders (see below) or 

work on its own. 
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Note that the final OR gate before the carry-out output may be replaced by 

an XOR gate without altering the resulting logic. This is because the only 

discrepancy between OR and XOR gates occurs when both inputs are 1; for 

the adder shown here, one can check this is never possible. Using only two 

types of gates is convenient if one desires to implement the adder directly 

using common IC chips. A full adder can be constructed from two half 

adders by connecting A and B to the input of one half adder, connecting the 

sum from that to an input to the second adder, connecting Ci to the other 

input and or the two carry outputs. Equivalently, S could be made the three-

bit xor of A, B, and Ci and Co could be made the three-bit majority function 

of A, B, and Ci . The output of the full adder is the two-bit arithmetic sum of 

three one-bit numbers 
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Subtractor 

 

The full-subtractor is a combinational circuit which is used to perform 

subtraction of three bits. It has three inputs, X (minuend) and Y (subtrahend) 

and Z (subtrahend) and two outputs D (difference) and B (borrow). 

 

D=X-Y-Z (don't bother about sign) 

B = 1 If X<(Y+Z) 

 

The truth table for the full subtractor is given below. 

X Y Z D B 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 

 

So, Logic equations are: 
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SOFTWARE 

 

ModelSim   

Mentor Graphics was the first to combine single kernel simulator (SKS) 

technology with a unified debug environment for Verilog, VHDL, and 

SystemC. The combination of industry-leading, native SKS performance 

with the best integrated debug and analysis environment 

make ModelSim® the simulator of choice for both ASIC and FPGA designs. 

The best standards and platform support in the industry make it easy to adopt 

in the majority of process and tool flows. 

Features: 

Advanced Code Coverage: 

ModelSim’s advanced code coverage capabilities and ease of use lower the 

barriers for leveraging this valuable verification resource.  

The ModelSim advanced code coverage capabilities provide valuable 

metrics for systematic verification. All coverage information is stored in the 

Unified Coverage DataBase (UCDB), which is used to collect and manage 

all coverage information in a highly efficient database. Coverage utilities 

that analyze code coverage data, such as merging and test ranking, are 

available. Coverage results can be viewed interactively, post-simulation, or 

after a merge of multiple simulation runs. Code coverage metrics can be 

reported by instance or by design unit, providing flexibility in managing 

coverage data. 

The coverage types supported include: 
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 Statement coverage: number of statements executed during a run 

 Branch coverage: expressions and case statements that affect the 

control flow of the HDL execution 

 Condition coverage: breaks down the condition on a branch into 

elements that make the result true or false 

 Expression coverage: the same as condition coverage, but covers 

concurrent signal assignments instead of branch decisions 

 Focused expression coverage:presents expression coverage data in a 

manner that accounts for each independent input to the expression in 

determining coverage results 

 Enhanced toggle coverage: in default mode, counts low-to-high and 

high-to-low transitions; in extended mode, counts transitions to and 

from X 

 Finite State Machine coverage: state and state transition coverage 

 

Mixed HDL Simulation 

ModelSim combines simulation performance and capacity with the code 

coverage and debugging capabilities required to simulate multiple blocks 

and systems and attain ASIC gate-level sign-off. Comprehensive support of 

Verilog, System Verilog for Design, VHDL, and SystemC provide a solid 

foundation for single and multi-language design verification environments. 

ModelSim’s easy to use and unified debug and simulation environment 

provide today’s FPGA designers both the advanced capabilities that they are 

growing to need and the environment that makes their work productive.. 



23 

 

 

Effective Debug Environment: 

The ModelSim debug environment’s broad set of intuitive capabilities for 

Verilog, VHDL, and SystemC make it the choice for ASIC and FPGA 

design. 

ModelSim eases the process of finding design defects with an intelligently 

engineered debug environment. The ModelSim debug environment 

efficiently displays design data for analysis and debug of all languages. 

ModelSim allows many debug and analysis capabilities to be employed 

post-simulation on saved results, as well as during live simulation runs. For 

example, the coverage viewer analyzes and annotates source code with code 

coverage results, including FSM state and transition, statement, expression, 

branch, and toggle coverage. 

Signal values can be annotated in the source window and viewed in the 

waveform viewer, easing debug navigation with hyperlinked navigation 

between objects and its declaration and between visited files. 

Race conditions, delta, and event activity can be analyzed in the list and 

wave windows. User-defined enumeration values can be easily defined for 

quicker understanding of simulation results. For improved debug 

productivity, ModelSim also has graphical and textual dataflow capabilities. 

 

 

 



24 

 

How To Use Modelsim 

1.Open modelsim software 

 

 

2.Creat New project 
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3.Creat project file 

 

4.Double click on file name,it will open work space 

 

 

 



26 

 

5.Write the codes  

 

6.Compile the file: Select the file :Right click on it: Go to compile and select compile   
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7 Go to Simulate. And click on Start simulation 

 

8.Adding wave to signal 
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9.Now Force the input signal  value.  

 

10.Click on Run and get the output 
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XILINX ISE 

Xilinx ISE (Integrated Synthesis Environment) is a software tool produced 

by Xilinx for synthesis and analysis of HDL designs, enabling the developer 

to synthesize ("compile") their designs, perform timing analysis, examine 

RTL diagrams, simulate a design's reaction to different stimuli, and 

configure the target device with the programmer. 

The Xilinx ISE is a design environment for FPGA products from Xilinx, and 

is tightly-coupled to the architecture of such chips, and cannot be used with 

FPGA products from other vendors.The Xilinx ISE is primarily used for 

circuit synthesis and design, while the ModelSim logic simulator is used for 

system-level testing. Other components shipped with the Xilinx ISE include 

the Embedded Development Kit (EDK), a Software Development Kit (SDK) 

and ChipScope Pro. 

 

User Interface 

The primary user interface of the ISE is the Project Navigator, which 

includes the design hierarchy (Sources), a source code editor (Workplace), 

an output console (Transcript), and a processes tree (Processes). 

The Design hierarchy consists of design files (modules), whose 

dependencies are interpreted by the ISE and displayed as a tree structure.For 

single-chip designs there may be one main module, with other modules 

included by the main module, similar to the main() subroutine 

in C++ programs. Design constraints are specified in modules, which 

include pin configuration and mapping. 

http://en.wikipedia.org/wiki/ModelSim
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/C%2B%2B
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The Processes hierarchy describes the operations that the ISE will perform 

on the currently active module. The hierarchy includes compilation 

functions, their dependency functions, and other utilities. The window also 

denotes issues or errors that arise with each function. 

The Transcript window provides status of currently running operations, and 

informs engineers on design issues. Such issues may be filtered to show 

Warnings, Errors, or both. 

Simulation 

System-level testing may be performed with the ModelSim logic simulator, 

and such test programs must also be written in HDL languages. Test bench 

programs may include simulated input signal waveforms, or monitors which 

observe and verify the outputs of the device under test. 

ModelSim may be used to perform the following types of simulations: 

 Logical verification, to ensure the module produces expected results 

 Behavioural verification, to verify logical and timing issues 

 Post-place & route simulation, to verify behaviour after placement of 

the module within the reconfigurable logic of the FPGA 

Synthesis 

Xilinx's patented algorithm for synthesis allow designs to run upto 30% 

faster than competing programs, and allows greater logic density which 

reduces project costs. 

Also, due to the increasing complexity of FPGA fabric, including memory 

blocks and I/O blocks, more complex synthesis algorithms were developed 

that separate unrelated modules into slices, reducing post-placement errors. 

http://en.wikipedia.org/wiki/ModelSim
http://en.wikipedia.org/wiki/Device_under_test
http://en.wikipedia.org/wiki/ModelSim
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IP Cores are offered by Xilinx and other third-party vendors, to implement 

system-level functions such as digital signal processing (DSP), bus 

interfaces, networking protocols, image processing, embedded processors, 

and peripherals.Xilinx has been instrumental in shifting designs from ASIC-

based implementation to FPGA-based implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Soft_microprocessor


32 

 

 

 

 

 

 

 

 

CHAPTER 4 

 

 

 

 

 

 

 

 



33 

 

ALGORITHMS IMPLEMENTED 

Wallace Tree Multiplier 

Introduction 

A Wallace tree is an efficient hardware implementation of a digital circuit 

that multiplies two integers, devised by Australian Computer Scientist Chris 

Wallace in 1964. 

The Wallace tree has three steps: 

1. Multiply (that is - AND) each bit of one of the arguments, by each bit 

of the other, yielding  results. Depending on position of the 

multiplied bits, the wires carry different weights, for example wire of 

bit carrying result of  is 32 (see explanation of weights below). 

2. Reduce the number of partial products to two by layers of full and half 

adders. 

3. Group the wires in two numbers, and add them with a 

conventional adder. 

The second phase works as follows. As long as there are three or more wires 

with the same weight add a following layer: 

 Take any three wires with the same weights and input them into a full 

adder. The result will be an output wire of the same weight and an 

output wire with a higher weight for each three input wires. 

 If there are two wires of the same weight left, input them into a half 

adder. 

 If there is just one wire left, connect it to the next layer. 
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The benefit of the Wallace tree is that there are only  reduction 

layers, and each layer has  propagation delay. As making the partial 

products is  and the final addition is , the multiplication is 

only , not much slower than addition (however, much more 

expensive in the gate count). Naively adding partial products with regular 

adders would require  time. From a complexity 

theoretic perspective, the Wallace tree algorithm puts multiplication in the 

class NC. 

These computations only consider gate delays and don't deal with wire 

delays, which can also be very substantial. 

The Wallace tree can be also represented by a tree of 3/2 or 4/2 adders. It is 

sometimes combined with Booth encoding. 
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Generic Example 

For ,  

multiplying  by : 

1. First we multiply every bit by every bit: 

 weight 1 -  

 weight 2 - ,  

 weight 4 - , ,  

 weight 8 - , , ,  

 weight 16 - , ,  

 weight 32 - ,  

 weight 64 -  

2. Reduction layer 1: 

 Pass the only weight-1 wire through, output: 1 weight-1 wire 

 Add a half adder for weight 2, outputs: 1 weight-2 wire, 1 

weight-4 wire 

 Add a full adder for weight 4, outputs: 1 weight-4 wire, 1 

weight-8 wire 

 Add a full adder for weight 8, and pass the remaining wire 

through, outputs: 2 weight-8 wires, 1 weight-16 wire 

 Add a full adder for weight 16, outputs: 1 weight-16 wire, 1 

weight-32 wire 
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 Add a half adder for weight 32, outputs: 1 weight-32 wire, 1 

weight-64 wire 

 Pass the only weight-64 wire through, output: 1 weight-64 wire 

3. Wires at the output of reduction layer 1: 

 weight 1 - 1 

 weight 2 - 1 

 weight 4 - 2 

 weight 8 - 3 

 weight 16 - 2 

 weight 32 - 2 

 weight 64 - 2 

4. Reduction layer 2: 

 Add a full adder for weight 8, and half adders for weights 4, 16, 

32, 64 

5. Outputs: 

 weight 1 - 1 

 weight 2 - 1 

 weight 4 - 1 

 weight 8 - 2 

 weight 16 - 2 
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 weight 32 - 2 

 weight 64 - 2 

 weight 128 - 1 

6. Group the wires into a pair integers and an adder to add them 

 

 

 

 

 

 

 

 

 

 

 

Wallace Multiplier Intermediate Stage 
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Final Stage of Wallace Tree Multiplier 

 

 



39 

 

Karatsuba Multiplier 

The Karatsuba algorithm is a fast multiplication algorithm. It was discovered 

by Anatolii Alexeevitch Karatsuba in 1960 and published in 1962. It reduces 

the multiplication of two n-digit numbers to at most  single-

digit multiplications in general (and exactly  when n is a power of 2). 

It is therefore faster than the classical multiplication algorithm, which 

requires n
2
 single-digit products. 

For example, the Karatsuba algorithm requires 3
10

 = 59,049 single-digit 

multiplications to multiply two 1024-digit numbers (n = 1024 = 2
10

), 

whereas the classical algorithm requires (2
10

)
2
 = 1,048,576. 

The Karatsuba algorithm was the first multiplication algorithm 

asymptotically faster than the quadratic "grade school" algorithm. 

The Toom–Cook algorithm is a faster generalization of Karatsuba's method, 

and the Schönhage–Strassen algorithm is even faster, for sufficiently large n. 

 

Basic steps of algorithm 

The basic step of Karatsuba's algorithm is a formula that allows us to 

compute the product of two large numbers  and  using three 

multiplications of smaller numbers, each with about half as many digits as 

 or , plus some additions and digit shifts. 

Let  and  be represented as -digit strings in some base . For any 

positive integer  less than , one can write the two given numbers as 

 

, 
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where  and  are less than . The product is then 

 

 

where 

 

 

 

These formulae require four multiplications, and were known to Charles 

Babbage. Karatsuba observed that  can be computed in only three 

multiplications, at the cost of a few extra additions. With  and  as before 

we can calculate 

 

which holds since 

 

 

A more efficient implementation of Karatsuba multiplication can be set as 

 , 

 where  is the power where the split occurs of . 
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Example 

To compute the product of 12345 and 6789, choose B = 10 and m = 3. Then 

we decompose the input operands using the resulting base (B
m
 = 1000), as: 

12345 = 12 · 1000 + 345 

6789 = 6 · 1000 + 789 

Only three multiplications, which operate on smaller integers, are used to 

compute three partial results: 

z2 = 12 × 6 = 72 

z0 = 345 × 789 = 272205 

z1 = (12 + 345) × (6 + 789) − z2 − z0 = 357 × 795 − 72 − 272205 = 283815 − 

72 − 272205 = 11538 

We get the result by just adding these three partial results, shifted 

accordingly (and then taking carries into account by decomposing these 

three inputs in base 1000 like for the input operands): 

result = z2 · B
2m

 + z1 · B
m
 + z0, i.e. 

result = 72 · 1000
2
 + 11538 · 1000 + 272205 = 83810205. 

Note that the intermediate third multiplication operates on an input domain 

which is less than twice larger than for the two first multiplications, its 

output domain is less than four times larger, and base-1000 carries computed 

from the first two multiplications must be taken into account when 

computing these two subtractions; but note also that this partial 

result z1 cannot be negative: to compute these subtractions, equivalent 



42 

 

additions using complements to 1000
2
 can also be used, keeping only the 

two least significant base-1000digits for each number: 

z1 = 283815 − 72 − 272205 = (283815 + 999928 + 727795) mod 1000
2
 = 

2011538 mod 1000
2
 = 11538. 
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VHDL CODES FOR MULTIPLIER 

 

WALLACE TREE MULTIPLIER 

 

MAIN MULTIPLIER 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity treeWallace is 

    Port ( A, B : in  STD_LOGIC_VECTOR (3 downto 0); 

           PROD : out  STD_LOGIC_VECTOR (7 downto 0)); 

end treeWallace; 

 

  

architecture multiplier of treeWallace is 

--component Half Adder for instances where two partial products are to be 

added 

component WFULLADD is 

Port( a, b, cin : in STD_LOGIC; 

   sum, carry : out STD_LOGIC); 

end component; 

  

 

--component Full Adder for instances where more than two partial products 

are to be added 

component WHALFADD is 
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Port(a, b : in STD_LOGIC; 

     sum, carry : out STD_LOGIC); 

end component; 

 

 

signal s11,s12,s13,s14,s15,s22,s23,s24,s25,s26,s32,s34,s35,s36,s37 : 

STD_LOGIC; 

 

signal c11,c12,c13,c14,c15,c22,c23,c24,c25,c26,c32,c34,c35,c36,c37 : 

STD_LOGIC; 

 

signal p0,p1,p2,p3 : STD_LOGIC_VECTOR(3 downto 0); 

 

 

begin 

 

process(A,B) 

begin 

--partial products generation stage 

--here each bit of each binary multiplicand is multiplied by the other 

--thus we have n
2
 bits 

for i in 0 to 3 loop 

p0(i)<=A(i) and B(0); 

p1(i)<=A(i) and B(1); 

p2(i)<=A(i) and B(2); 

p3(i)<=A(i) and B(3); 

end loop; 

end process; 
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--first partial products reduction stage 

ha11 : WHALFADD port map(p0(1),p1(0),s11,c11); 

fa12 : WFULLADD port map(p0(2),p1(1),p2(0),s12,c12); 

fa13 : WFULLADD port map(p0(3),p1(2),p2(1),s13,c13); 

fa14 : WFULLADD port map(p1(3),p2(2),p3(1),s14,c14); 

ha15 : WHALFADD port map(p2(3),p3(2),s15,c15); 

 

--second partial products reduction stage 

ha22 : WHALFADD port map(c11,s12,s22,c22); 

fa23 : WFULLADD port map(p3(0),c12,s13,s23,c23); 

fa24 : WFULLADD port map(c13,c32,s14,s24,c24); 

fa25 : WFULLADD port map(c14,c24,s15,s25,c25); 

fa26 : WFULLADD port map(c15,c25,p3(3),s26,c26); 

 

--third partial products reduction stage 

ha32 : WHALFADD port map(c22,s23,s32,c32); 

ha34 : WHALFADD port map(c23,s24,s34,c34); 

ha35 : WHALFADD port map(c34,s25,s35,c35); 

ha36 : WHALFADD port map(c35,s26,s36,c36); 

ha37 : WHALFADD port map(c36,c26,s37,c37); 

 

---final mapping 

PROD(0)<=p0(0); 

PROD(1)<=s11; 

PROD(2)<=s22; 

PROD(3)<=s32; 

PROD(4)<=s34; 

PROD(5)<=s35; 
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PROD(6)<=s36; 

PROD(7)<=s37; 

  

end multiplier; 

 

FULL ADDER 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity WFULLADD is 

port(a,b,cin: in STD_LOGIC; 

  sum,carry: out STD_LOGIC);   

end WFULLADD; 

 

architecture fulladd of WFULLADD is 

   

  begin 

   

  sum <= (a AND b) OR (b AND cin) OR (a AND cin); 

  carry <= a XOR b XOR cin; 

   

end fulladd; 
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HALF ADDER 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity WHALFADD is 

port(a,b: in STD_LOGIC; 

  sum,carry: out STD_LOGIC);   

end WHALFADD; 

 

architecture halfadd of WHALFADD is 

 

begin 

   

  sum <= a XOR b; 

  carry <= a AND b; 

   

end halfadd; 
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KARATSUBA TREE MULTIPLIER 

 

MAIN MULTIPLIER 

 

library ieee;  

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

 

entity karatsuba_multiplier_even is 

 

port ( 

  a, b: in std_logic_vector(7 downto 0); 

  d: out std_logic_vector(15 downto 0) 

); 

end karatsuba_multiplier_even; 

 

 

architecture simple of karatsuba_multiplier_even is 

   

  component Multiplier_VHDL is 

  port 

   ( 

      Nibble1, Nibble2: in std_logic_vector(3 downto 0); 

  

      Result: out std_logic_vector(7 downto 0) 

   ); 

  end component; 
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  component Multiplier_VHDL1 is 

     port 

   ( 

      Nibble1, Nibble2: in std_logic_vector(4 downto 0); 

  

      Result: out std_logic_vector(9 downto 0) 

   ); 

end component; 

   

  component test1 is 

        port(a,b:in std_logic_vector(3 downto 0); 

            s:out std_logic_vector(4 downto 0) 

            ); 

  end component; 

         

 component subtr is   

  port(A,B : in std_logic_vector(9 downto 0);   

      RES : out std_logic_vector(9 downto 0));   

  end component;  

   

  component adr16 is   

  port(A,B : in std_logic_vector(15 downto 0);   

      RES : out std_logic_vector(15 downto 0));   

end component;          

         

  signal x0y0,x1y1: std_logic_vector(7 downto 0); 

  signal x01y01: std_logic_vector(9 downto 0); 
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  signal x0_p_X1, y0_p_y1: std_logic_vector(4 downto 0); 

  signal x0y0a, x1y1a, res1, res2: std_logic_vector(9 downto 0); 

  signal h, i, l, res3, res4: std_logic_vector(15 downto 0):=(others=>'0'); 

 

begin 

 

  mult1: Multiplier_VHDL 

            port map(a(3 downto 0), b(3 downto 0), x0y0); 

 

  mult2: Multiplier_VHDL  

            port map(a(7 downto 4), b(7 downto 4), x1y1); 

 

  mult3: Multiplier_VHDL1 

            port map(x0_p_X1, y0_p_y1, x01y01); 

   

  add1: test1  

            port map(a(7 downto 4),a(3 downto 0), x0_p_X1); 

  add2: test1  

            port map(b(7 downto 4),b(3 downto 0), y0_p_y1); 

               

   x1y1a <= "00"&x1y1; 

   x0y0a <= "00"&x0y0;            

               

  sub1: subtr 

            port map(x01y01,x1y1a,res1);     

  sub2: subtr 

            port map(res1,x0y0a,res2);                  
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    h(15 downto 8) <= x1y1; 

    i(13 downto 4) <= res2; 

    l(7 downto 0) <= x0y0; 

     

  adr16a: adr16 

            port map(h, i, res3);  

  adr16b: adr16 

            port map(res3, l, res4);  

               

  d <= res4;             

                         

  end simple 

 

4-BIT RIPPLE CARRY ADDER 

 

library ieee; 

    use ieee.std_logic_1164.all; 

    entity rca4 is 

        port(a,b:in std_logic_vector(3 downto 0); 

            cin:in std_logic; 

            s:out std_logic_vector(3 downto 0); 

            cout:out std_logic); 

        end rca4; 

             

architecture struct of rca4 is 

    signal c1,c2,c3:std_logic; 

    component full is 
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    port(a,b,cin:in std_logic; 

         s,cout:out std_logic); 

     end component; 

     begin 

         fa1:full port map(a(0),b(0),cin,s(0),c1); 

         fa2:full port map(a(1),b(1),c1,s(1),c2); 

         fa3:full port map(a(2),b(2),c2,s(2),c3); 

         fa4:full port map(a(3),b(3),c3,s(3),cout); 

     end struct; 

 

COMPONENT FOR CONCATENATING  CARRIES 

 

library ieee; 

    use ieee.std_logic_1164.all; 

    entity test1 is 

        port (a,b:in std_logic_vector(3 downto 0); 

            s:out std_logic_vector(4 downto 0); 

        end test1; 

             

architecture struct of test1 is 

 signal c1:std_logic_vector(3 downto 0);  

 signal c2:std_logic; 

 component rca4 is 

        port(a,b: in std_logic_vector(3 downto 0); 

            cin: in std_logic; 

            s: out std_logic_vector(3 downto 0); 

            cout: out std_logic); 

 end component; 



54 

 

  begin 

        rca1: rca4 port map(a,b,'0',c1,c2); 

        s <= c2&c1;   

     end struct; 

 

 

4-BIT MULTIPIERS 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

  

entity Multiplier_VHDL is 

   port 

   ( 

      Nibble1, Nibble2: in std_logic_vector(3 downto 0); 

  

      Result: out std_logic_vector(7 downto 0) 

   ); 

end entity Multiplier_VHDL; 

  

architecture Behavioral of Multiplier_VHDL is 

begin 

  

   Result <= std_logic_vector(unsigned(Nibble1) * unsigned(Nibble2)); 

  

end architecture Behavioral; 
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5-BIT MULTIPLIER 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

   

entity Multiplier_VHDL1 is 

   port 

   ( 

      Nibble1, Nibble2: in std_logic_vector(4 downto 0); 

  

      Result: out std_logic_vector(9 downto 0) 

   ); 

end entity Multiplier_VHDL1; 

  

architecture Behavioral of Multiplier_VHDL1 is 

begin 

  

   Result <= std_logic_vector(unsigned(Nibble1) * unsigned(Nibble2)); 

  

end architecture Behavioral; 
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FULL ADDER 

 

library ieee; 

use ieee.std_logic_1164.all; 

entity full is 

    port(a,b,cin:in std_logic; 

         s,cout:out std_logic); 

     end full; 

      

 architecture FA of full is 

   begin 

       s<= a xor b xor cin; 

       cout<=(a and b)or(a and cin)or(b and cin) ; 

   end FA; 

 

16-BIT ADDER 

 

library ieee;   

use ieee.std_logic_1164.all;   

use ieee.std_logic_unsigned.all;  

entity adr16 is   

  port(A,B : in std_logic_vector(15 downto 0);   

      RES : out std_logic_vector(15 downto 0));   

end adr16;   

architecture archi of adr16 is   

  begin   

    RES <= A + B;   

end archi;  
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10-BIT SUBTRACTOR 

 

library ieee;   

use ieee.std_logic_1164.all;   

use ieee.std_logic_unsigned.all;  

entity subtr is   

  port(A,B : in std_logic_vector(9 downto 0);   

      RES : out std_logic_vector(9 downto 0));   

end subtr;   

architecture archi of subtr is   

  begin   

    RES <= A - B;   

end archi; 
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Simulation output: Wallace Tree Multiplier  

 

 

 

Simulation output: Karatsuba Multiplier 
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60 

 

 

APPLICATIONS 

The potential usages of proposed design are - 

• High Speed Signal Processing that includes DSP based applications. 

• DWT and DCT transforms used for image and wide signal processing. 

• FIR and IIR Filters for high speed, low power filtering applications. 

• Multirate signal processing applications such as digital down converters 

and up converters. 

 

Computers are extremely capable in two broad areas: (1) data manipulation, 

such as word processing and database management, and (2) mathematical 

calculation, used in science, engineering, and Digital Signal Processing. 

However, most computers are not optimized to perform both functions. In 

computing applications such as word processing, data must be stored, sorted, 

compared, moved, etc., and the time to execute a particular instruction is not 

critical, as long as the program’s overall response time to various commands 

and operations is adequate enough to satisfy the end user. Occasionally, 

mathematical operations may also be performed, as in a spreadsheet or 

database program, but speed of execution is generally not the governing 

factor. In most general purpose computing applications there is no 

concentrated attempt by software companies to make the code efficient. 

Application programs are loaded with “features” which require more 

memory and faster processors with every new release or upgrade. 



61 

 

On the other hand, digital signal processing applications require that 

mathematical operations be performed quickly, and the time to execute a 

given instruction must be known precisely, and it must be predictable. Both 

code and hardware must be extremely efficient to accomplish this. As has 

been shown in the last two sections of this book, the most fundamental 

mathematical operation or kernel in all of DSP is the sum-of-products (or 

dot-product). Fast execution of the dot product is critical to fast Fourier 

transforms (FFTs), real time digital filters, matrix multiplications, graphics 

pixel manipulation, etc. 

Multiplication is an important fundamental function in arithmetic operations. 

Multiplication-based operations such as Multiply and Accumulate(MAC) 

and inner product are among some of the frequently used computation 

Intensive Arithmetic Functions(CIAF) currently implemented in many 

Digital Signal Processing (DSP) applications such as convolution, Fast 

Fourier Transform(FFT), filtering and in microprocessors m its arithmetic 

and logic unit. Since multiplication dominates the execution tune of most 

DSP algorithms, so there is a need of high speed multiplier. Currently, 

multiplication time is still the dominant factor in determining the instruction 

cycle time of a DSP chip. The demand for high speed processing has been 

increasing as a result of expanding computer and signal processing 

applications. Higher throughput arithmetic operations are important to 

achieve the desired performance in many real-time signal and image 

processing applications. 
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