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ABSTRACT

A Binary multiplier is an integral part of the arithmetic logic unit
(ALU) subsystem found in many processors. Integer multiplication can be
inefficient and costly, in time and hardware, depending on the representation
of numbers. Karatsuba algorithm and others like Wallace-Tree suggest
techniques for multiplying signed numbers that works equally well for

efficient multiplication.

In this project, we have used VHDL as a HDL and Mentor
Graphics Tools (MODEL-SIM ) for describing and verifying a hardware
design based on Booth's and some other efficient algorithms. Instead of
writing TestBenches & Test-Cases we used Wave-Form Analyzer which can
give a better understanding of Signals & variables and also proved a good

choice for simulation of design.




CHAPTER 1




Introduction

Although computer arithmetic is sometimes viewed as a specialized part of
CPU design, still the discrete component designing is also a very important
aspect. A tremendous variety of algorithms have been proposed for use in
floating-point systems. Actual implementations are usually based on
refinements and variations of the few basic algorithms presented here. In
addition to choosing algorithms for addition, subtraction .multiplication, and

division, the computer architect must make other choices.

Multipliers play an important role in today’s digital signal processing and
various other applications in high performance systems such as
microprocessor, DSP etc addition and multiplication of two binary numbers
Is fundamental and most often used arithmetic operations. Statics shows that
more than 70% instructions in microprocessor and most of DSP algorithms
perform addition and multiplication. So, this operation dominates the
execution time. That’s why there is need of high speed multiplier. The
demand of high speed processing has been increasing as a result of
expanding computer and signal processing applications. Low power
consumption is also an important issue in multiplier design. To reduce
significant power consumption it is good to reduce the number of operation
thereby reducing dynamic power which is a major part of total power
consumption so the need of high speed and low power multiplier has
increased. Designers mainly concentrate on high speed and low power
efficient circuit design. The objective of a good multiplier is to provide a

physically packed together, high speed and low power consumption unit.




Multiplications are very expensive and slow the overall operation. The
performances of many computational problems are often dominated by the
speed at which a multiplication operation can be executed.

Consider two unsigned binary numbers X and Y that are M and N bits wide,
respectively. To introduce the multiplication operation, it is useful to express

X and Y in the binary representation.

The simplest way to perform a multiplication is to use a single two input
adder. For inputs that are M and N bits wide, the multiplication tasks M
cycles, using an N-bit adder. This shift —and-add algorithm for
multiplication adds together M partial products. Each partial product is
generated by multiplying the multiplicand with a bit of the multiplier —
which, essentially, is an AND operation — and by shifting the result in the
basis of the multiplier bit’s position. Similar to the familiar long hand
decimal multiplication, binary multiplication involves the addition of shifted
versions of the multiplicand based on the value and position of each of the
multiplier bits. As a matter of fact, it’s much simpler to perform binary
multiplication than decimal multiplication. The value of each digit of a
binary number can only be 0 or 1, thus, depending on the value of the
multiplier bit, the partial products can only be a copy of the multiplicand, or
0. In digital logic, this is simply an AND function. A faster way to
implement multiplication is to resort to an approach similar to manually
computing a multiplication. The entire partial product are generated at the
same time and organized in an array. A multi-operand addition is applied to
compute the final product. So the adder unit is very important for designing

any multiplier

An efficient multiplier should have following characteristics:-
9




« Accuracy:- A good multiplier should give correct result.
« Speed:- Multiplier should perform operation at high speed.
« Area:- A multiplier should occupies less number of slices and LUTSs.

Power: - Multiplier should consume less power.

There are different types of multiplier such as:-
1. Booth multiplier.
2. Combinational multiplier.
3. Wallace tree multiplier.
4. Array multiplier.

5. Sequential multiplier.
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VHDL

The VHSIC (very high speed integrated circuits) Hardware Description
Language (VHDL) was first proposed in 1981. The development of VHDL
was originated by IBM, Texas Instruments, and Inter-metrics in 1983. The
result, contributed by many participating EDA (Electronics Design
Automation) groups, was adopted as the IEEE 1076 standard in December
1987.

VHDL is intended to provide a tool that can be used by the digital systems
community to distribute their designs in a standard format. Using VHDL,
they are able to talk to each other about their complex digital circuits in a

common language without difficulties of revealing technical details.

As a standard description of digital systems, VHDL is used as input and
output to various simulation, synthesis, and layout tools. The language
provides the ability to describe systems, networks, and components at a very
high behavioral level as well as very low gate level. It also represents a top-

down methodology and environment.

Simulations can be carried out at any level from a generally functional

analysis to a very detailed gate-level wave form analysis.

Many DSP applications demand high throughput and real-time response,
performance constraints that often dictate unique architectures with high
levels of concurrency. DSP designers need the capability to manipulate and

evaluate complex algorithms to extract the necessary level of concurrency.
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Performance constraints can also be addressed by applying alternative
technologies. A change at the implementation level of design by the
insertion of a new technology can often make viable an existing marginal
algorithm or architecture. The VHDL language supports these modeling
needs at the algorithm or behavioral level, and at the implementation or
structural level. It provides a versatile set of description facilities to model
DSP circuits from the system level to the gate level. Recently, we have also
noticed efforts to include circuit-level modeling in VHDL. At the system
level we can build behavioral models to describe algorithms and
architectures. We would use concurrent processes with constructs common
to many high-level languages, such as if, case, loop, wait, and assert
statements. VHDL also includes user-defined types, functions, procedures,
and packages." In many respects VHDL is a very powerful, high-level,

concurrent programming language.

At the implementation level we can build structural models using component
Instantiation statements that connect and invoke subcomponents. The VHDL
generate statement provides ease of block replication and control. A
dataflow level of description offers a combination of the behavioral and
structural levels of description. VHDL lets us use all three levels to describe
a single component. Most importantly, the standardization of VHDL has
spurred the development of model libraries and design and development
tools at every level of abstraction. VHDL, as a consensus description
language and design environment, offers design tool portability, easy

technical exchange, and technology insertion
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Aim and Objective

The aim of this project is to design and implement the multiplier that takes
less time using fast multiplication techniques. In today’s scenario the
multipliers with advance features are available that consume less power and
less area. There has been extensive work on low-power multipliers at
technology, physical, circuit and logic levels. The systems performance is
based on speed, power and the area. Hence optimizing the speed is major

design issue.

In this project, the implementation of multiplication using FPGA-Based
computing platform will be done. Because the highly parallel nature of
matrix multiplication it makes an ideal application for using such platform.
The computations are done in parallel by multipliers and adders. In our
approach, we will adopt the software/hardware co-design. Our multiplier
will be modeled in VHDL.

The purely software implementation of matrix multiplication will be
accomplished. Observation of the matrix multiplication equations shows that
the multiplications can be performed concurrently, and then the additions
can be performed concurrently. This parallelism can be exploited to increase

processing speed.

There are various techniques or we can say algorithms that can be used for
fast multiplication process they as follows:-
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Components

In electronics, an adder is a digital circuit that performs addition of
numbers. In modern computers adders reside in the arithmetic logic unit
(ALU) where other operations are performed. Although adders can be
constructed for many numerical representations, such as Binary-coded
decimal or excess-3, the most common adders operate on binary numbers. In
cases where two's complement is being used to represent negative numbers

it is trivial to modify an adder into an adder-subtracter
Types of adders

For single bit adders, there are two general types.

A half adder has two inputs, generally labeled A and B, and two outputs, the
sum S and carry C. S is the two-bit XOR of A and B, and C is the AND of A
and B. Essentially the output of a half adder is the sum of two one-bit
numbers, with C being the most significant of these two outputs. The second

type of single bit adder is the full adder.

The full adder takes into account a carry input such that multiple adders can
be used to add larger numbers. To remove ambiguity between the input and
output carry lines, the carry in is labeled Ci or Cin while the carry out is
labeled Co or Cout.

15




Half adder

™ >

A half adder is a logical circuit that performs an addition operation on two
binary digits. The half adder produces a sum and a carry value which are

both binary digits.

S= A XOR B;

C=A AND B;
Input | Output
A B LD
0101010
011]10{(1
1 10|10 |1
l 1. O

Truth table
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Full adder

ﬁd»@
Cl"l

Cout

Inputs: {A, B, Carry In} — Outputs: {Sum, Carry Out}

A full adder is a logical circuit that performs an addition operation on three
binary digits. The full adder produces a sum and carries value, which are
both binary digits. It can be combined with other full adders (see below) or

work on its own.

Input Input |Carry [ Sum Carry
bit for | bit for bit bit bit
number | number| input | output | output

i B ':qu = Cout

0 o i o i

0 0 1 1 i

0 1 i 1 )

0 1 1 o 1

1 ) 0 1 0

1 o 1 o 1

1 1 2 ) 1

1 1 1 1 1
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Note that the final OR gate before the carry-out output may be replaced by
an XOR gate without altering the resulting logic. This is because the only
discrepancy between OR and XOR gates occurs when both inputs are 1; for
the adder shown here, one can check this is never possible. Using only two
types of gates is convenient if one desires to implement the adder directly
using common IC chips. A full adder can be constructed from two half
adders by connecting A and B to the input of one half adder, connecting the
sum from that to an input to the second adder, connecting Ci to the other
input and or the two carry outputs. Equivalently, S could be made the three-
bit xor of A, B, and Ci and Co could be made the three-bit majority function
of A, B, and Ci . The output of the full adder is the two-bit arithmetic sum of

three one-bit numbers
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Subtractor

The full-subtractor is a combinational circuit which is used to perform

subtraction of three bits. It has three inputs, X (minuend) and Y (subtrahend)

and Z (subtrahend) and two outputs D (difference) and B (borrow).

D=X-Y-Z (don't bother about sign)
B=1If X<(Y+2)

The truth table for the full subtractor is given below.

XY Z D

0 0 00

0 0 11

So, Logic equations are:
D=(XaY)s Z

B=X-(Y®Z)+Y - Z

B

0

1
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SOFTWARE

ModelSim

Mentor Graphics was the first to combine single kernel simulator (SKS)
technology with a unified debug environment for Verilog, VHDL, and
SystemC. The combination of industry-leading, native SKS performance
with  the best integrated debug and analysis environment
make ModelSim® the simulator of choice for both ASIC and FPGA designs.
The best standards and platform support in the industry make it easy to adopt

in the majority of process and tool flows.
Features:

Advanced Code Coverage:

ModelSim’s advanced code coverage capabilities and ease of use lower the

barriers for leveraging this valuable verification resource.

The ModelSim advanced code coverage capabilities provide valuable
metrics for systematic verification. All coverage information is stored in the
Unified Coverage DataBase (UCDB), which is used to collect and manage
all coverage information in a highly efficient database. Coverage utilities
that analyze code coverage data, such as merging and test ranking, are
available. Coverage results can be viewed interactively, post-simulation, or
after a merge of multiple simulation runs. Code coverage metrics can be
reported by instance or by design unit, providing flexibility in managing

coverage data.

The coverage types supported include:
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Statement coverage: number of statements executed during a run

Branch coverage: expressions and case statements that affect the

control flow of the HDL execution

Condition coverage: breaks down the condition on a branch into

elements that make the result true or false

Expression coverage: the same as condition coverage, but covers

concurrent signal assignments instead of branch decisions

Focused expression coverage:presents expression coverage data in a
manner that accounts for each independent input to the expression in

determining coverage results

Enhanced toggle coverage: in default mode, counts low-to-high and
high-to-low transitions; in extended mode, counts transitions to and

from X

Finite State Machine coverage: state and state transition coverage

Mixed HDL Simulation

ModelSim combines simulation performance and capacity with the code

coverage and debugging capabilities required to simulate multiple blocks

and systems and attain ASIC gate-level sign-off. Comprehensive support of

Verilog, System Verilog for Design, VHDL, and SystemC provide a solid

foundation for single and multi-language design verification environments.

ModelSim’s easy to use and unified debug and simulation environment

provide today’s FPGA designers both the advanced capabilities that they are

growing to need and the environment that makes their work productive..
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Effective Debug Environment:

The ModelSim debug environment’s broad set of intuitive capabilities for
Verilog, VHDL, and SystemC make it the choice for ASIC and FPGA

design.

ModelSim eases the process of finding design defects with an intelligently
engineered debug environment. The ModelSim debug environment

efficiently displays design data for analysis and debug of all languages.

ModelSim allows many debug and analysis capabilities to be employed
post-simulation on saved results, as well as during live simulation runs. For
example, the coverage viewer analyzes and annotates source code with code
coverage results, including FSM state and transition, statement, expression,

branch, and toggle coverage.

Signal values can be annotated in the source window and viewed in the
waveform viewer, easing debug navigation with hyperlinked navigation

between objects and its declaration and between visited files.

Race conditions, delta, and event activity can be analyzed in the list and
wave windows. User-defined enumeration values can be easily defined for
quicker understanding of simulation results. For improved debug

productivity, ModelSim also has graphical and textual dataflow capabilities.
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How To Use Modelsim

1.0Open modelsim software

T ModelSim SE PLUS 6.2c j 24

File Edit View Compile Simulate Add Project Tools Layout Window Help

J Cortains [ .7 J 34 3 i J Leyout [NoDesign

Status | Type | Orde] Mod
@] pelvhd P OVHDL 0 04

T |

] 85 Proiect | [l Library

Transcript Hi
7/ ND IS SUBJECT T0 LICENSE TERMS.
4

# Loading project ppt

Modelims

| A Teanseiet | :

2.Creat New project

M ModelSim SE PLUS 6.2 A S g G =1 eI
s e r—_
[ File Edit View Compile Simulate Add Libra

ry Tools Layout Window Help

| O B0 |
Name Tywe  [Path
(i) werk Libiary T
i svsd Library  $MOI
wfli] vialzoon Lipiay  $MOI
] eee Lipiay  $MOI
wfli] modelsim_ib Lipiay  $MOI
] Lipiay  $MOI
wfl] s developerskit  Libray  $MOI
Efl] smopsys Libiay  $MOI
&l veiog Libiay  $MOI

[~ Project Nam

|

[ Project Lacation
|\|: Modeltech_6 2cfexamples Browse.

[~ Default Library Name————————————————
|k |

Copy Settings From
C:Modeitech 6. 2c /modelsim ini Browse.
- & Copy Library Mappings  Reference Libraty Mappings
7 o
0K | Caneel
L E

Transeript
8 =
# Laading project ppt

1 reading C:\Modeltech_6.2c\win2/../modelsim.ini

todelSims

A Teanseiet | :
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3.Creat project file

T Model5im SE PLUS 6.2c R st e W S

[ File Edit view Compile Simulste Add Project Tools Layout Window Help

File Name:
[

Add fle as yp Folder
’TVHDL -l | ‘ [Top Lewel

] O i & R e J Cortains 7 J w4 J { J Layout [NoDes
Narme Status|Type | Orde Mod

[N -
] 124 Proiect | [l Library EE
Transcript Hid
# Loading project ppt =
# reading C:\Modeltech_6.2c\win32/../modelsim, ini
# Loading project kk
todelSims =
A Teanseiet | o
: =] (EH P 0420
4.Double click on file name,it will open work space
‘ﬁlpdelgim SE PLUS 6.2c e

File Edit View Compile Simulate Add Source Tools Layout Window Help

| D&

e

Orde Modif in 4

e @ Iy ; |eman | Layour [NaDesin
Workspace ————— s ———— Hdy X [ CModohooh B 20emomplosivhd e

T — T o

] [ Project | JIj] Library LE H] kk.vhd

Transcript

# Loading project ppt
# reading C:\Modeltech_B.20\win32/../modelsin ni
# Loadding project kk.

ModelSims

1 3 Transoript I
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5.Write the codes

™ ModelSim St

File Edit View Compile Simulate Add Source Tools Layout Window Help

I NS & E i J Contains # H L NE] H S & @‘ J Laout [NoDesign - |

Workspace H] C:Modeltech_6 2c/examples/waLL vhd EIEI

["[name [Status[Type | Orde Modi in & ‘ |A
@ HALFADDER.. % VHDL 1 04/1i '

library IEEE;
use IEEE.STD LOGIC_1164.ALL;

FULLADDER... %  VHDL 2 04/1(

L vhd P VHDL 0 040

[=)[=1)[=

1

2

3

4 entity wallaced is

5 Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
[

7

8

9

B : in STD_LOGIC_VECTOR (3 downto 0); =
prod : out STD_LOGIC_VECTOR (7 downto 0));
end wallaced;

10 architecture Behavioral of wallaced is
11
12 component full adder is
13 Port ( a : in STD_LOGIC;
14 b : in STD LOGIC;
15 c : in STD_LOGIC;
ie sum : out STD LOGIC;
17 carry : out STD_LOGIC);
18 end component;
19
20 component half adder is
21 Port ( a : in STD_LOGIC;
q =l 22 bo:oin 8TD TOGTO:
] [ Proiect | JIj] Librars kL WALL vhd [ TH] HALF ADDER.vhd | [H] FULL ADDER vhd
Transcipt

# Loading project kk
# reading C:\Modehech_B. 2c\win32/../modelsim.ini
# Loading project WALL

ModelSim:

214

A Tesrsoit |

SE PLUS

File Edit View Compile Smulste Add Project Tools Layout Window Help
I ) Gl ol “ Contains £ H Oy T H SHEB | J Layout [NoDewion ~ wf ‘

Workspace [H] C:/Modekech_. 2c/enamples/wALL vhd HAlx

1n # | B
&
I & FucacoeR 1 library IEEE;
= WALLvhd Eveoute 2 use IEEE.STD LOGIC_1164.ALL;
- Compile Comple Selected
Add to Praject *| Compilesi wallaced is
Fiemove fiom Project Comple Outofate £ ( A i in  STD LOGIC VECTOR (3 downto 0);
Close Project Campile Order, B : in STD_LOGIC_VECTOR (3 d =
Update Compils Fieport prod : out STD_LOGIC_VECTOR (7 downto 0)):
Complle Summary..  Laced ;
Propeties
Project Seltings. Complle Propeities. fure Behavieral of wallaced
11
12z component full adder is
13 Port ( a : in STD_LOGIC;
14 b : in STD LOGIC;
15 ¢ : in STD_LOGIC?
16 sum : out STD_LOGIC;
17 carry : out STD LOGIC);
18 end component;
19
20 component half adder is
21 Port ( a : in STD LOGIC;
22 hosodin STD TOGTCO: -
T : 0
]ﬁlpmiect I} Ly A [0 Kicvhd | [H) WAL vhd [ H] HALF ADDER.vhd | [H] FULL ADDER.vhd K
Transeript Hd

# Loading projeot ki
# reading C:\Modsltech_6 Zo\kin32/../modelsin i
# Loading project WALL

ModelSim> -

1A Trenscit |

D
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7 Go to Simulate. And click on Start simulation

FM ModelSim SE PLUS - _a SIS

File Edit View Compile Simulate Add Project Tools Layout Window Help
I O s ds | ¥ By 5P J Contains # H Hery | J Layout [NoDesign - |
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W WALLwhd VKDL 0 04 2 use IEEE.STD LOGIC_1164.ALL;
= 3
1 entity wallaced is
5 Port ( A : in STD LOGIC_ VECTOR
6 B : in STD LOGIC . =
7 prod : out STD_LOX (7 downto 0));
8 end wallaced;
9 N
10 architecture Behaf M StartSimulstion =
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e an Enfly  C/Modskech 6. 2c/examples/or gale
1s HIE] piso Entty  C:Modekesh_E Jo/evamples/piso.vh
T'
16 || g s Enity  C:/Modekech B 2c/examples/mealy |
17 cazzy | | ] sse2 Erfity  C/Modskech 6 2c/sxamples/sisc2.v]
18 end component; HIE] Meewallace Erity Ce/Modslech_B. 2 enamples /e
19 E 4 LL J
20 component half adi +|E] wiulladd Enlity C:/Modelech_B. 2c/examples/ TreeFu)
= .
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9.Now Force the input signal value.

e e -_— - - —— T

File Edit View Compile Simulate Add Wave Tools Layout Window Help
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XILINX ISE

Xilinx ISE (Integrated Synthesis Environment) is a software tool produced
by Xilinx for synthesis and analysis of HDL designs, enabling the developer
to synthesize (“compile™) their designs, perform timing analysis, examine
RTL diagrams, simulate a design's reaction to different stimuli, and

configure the target device with the programmer.

The Xilinx ISE is a design environment for FPGA products from Xilinx, and
Is tightly-coupled to the architecture of such chips, and cannot be used with
FPGA products from other vendors.The Xilinx ISE is primarily used for
circuit synthesis and design, while the ModelSim logic simulator is used for
system-level testing. Other components shipped with the Xilinx ISE include
the Embedded Development Kit (EDK), a Software Development Kit (SDK)
and ChipScope Pro.

User Interface

The primary user interface of the ISE is the Project Navigator, which
includes the design hierarchy (Sources), a source code editor (Workplace),

an output console (Transcript), and a processes tree (Processes).

The Design hierarchy consists of design files (modules), whose
dependencies are interpreted by the ISE and displayed as a tree structure.For
single-chip designs there may be one main module, with other modules
included by the main module, similar to the main() subroutine
in C++ programs. Design constraints are specified in modules, which

include pin configuration and mapping.
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The Processes hierarchy describes the operations that the ISE will perform
on the currently active module. The hierarchy includes compilation
functions, their dependency functions, and other utilities. The window also

denotes issues or errors that arise with each function.

The Transcript window provides status of currently running operations, and
informs engineers on design issues. Such issues may be filtered to show

Warnings, Errors, or both.
Simulation

System-level testing may be performed with the ModelSim logic simulator,
and such test programs must also be written in HDL languages. Test bench
programs may include simulated input signal waveforms, or monitors which

observe and verify the outputs of the device under test.

ModelSim may be used to perform the following types of simulations:
. Logical verification, to ensure the module produces expected results
. Behavioural verification, to verify logical and timing issues

. Post-place & route simulation, to verify behaviour after placement of

the module within the reconfigurable logic of the FPGA
Synthesis

Xilinx's patented algorithm for synthesis allow designs to run upto 30%
faster than competing programs, and allows greater logic density which
reduces project costs.

Also, due to the increasing complexity of FPGA fabric, including memory
blocks and 1/0 blocks, more complex synthesis algorithms were developed

that separate unrelated modules into slices, reducing post-placement errors.
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IP Cores are offered by Xilinx and other third-party vendors, to implement
system-level functions such as digital signal processing (DSP), bus
interfaces, networking protocols, image processing, embedded processors,
and peripherals.Xilinx has been instrumental in shifting designs from ASIC-

based implementation to FPGA-based implementation.
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ALGORITHMS IMPLEMENTED

Wallace Tree Multiplier

Introduction

A Wallace tree is an efficient hardware implementation of a digital circuit

that multiplies two integers, devised by Australian Computer Scientist Chris
Wallace in 1964.

The Wallace tree has three steps:

1. Multiply (that is - AND) each bit of one of the arguments, by each bit

of the other, yielding n” results. Depending on position of the
multiplied bits, the wires carry different weights, for example wire of

bit carrying result of az2b3 is 32 (see explanation of weights below).

Reduce the number of partial products to two by layers of full and half

adders.

Group the wires in two numbers, and add them with a

conventional adder.

The second phase works as follows. As long as there are three or more wires

with the same weight add a following layer:

Take any three wires with the same weights and input them into a full
adder. The result will be an output wire of the same weight and an

output wire with a higher weight for each three input wires.

If there are two wires of the same weight left, input them into a half
adder.

If there is just one wire left, connect it to the next layer.
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The benefit of the Wallace tree is that there are only O{logn) reduction
layers, and each layer has O(1) propagation delay. As making the partial
products is O(1)and the final addition is O(logn), the multiplication is

only O(logn) not much slower than addition (however, much more

expensive in the gate count). Naively adding partial products with regular

: T2 ) o .
adders would require O(log 1) time. From a complexity
theoretic perspective, the Wallace tree algorithm puts multiplication in the
class NC.

These computations only consider gate delays and don't deal with wire

delays, which can also be very substantial.

The Wallace tree can be also represented by a tree of 3/2 or 4/2 adders. It is

sometimes combined with Booth encoding.
T

22

[o o o|/e]e o o]

Wallace Tree: 2 carry-save levels, 5 FA, 3 HA, 4-bit CPA
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Generic Example
For n = 4,
multiplying @aazaiao by b3babib:
1. First we multiply every bit by every bit:
« weight 1 - aobp
. weight2 - @b, a1by
.« Weight 4 - aoby, @11 asby
« Weight8 - agbs aybo, asby, azby
« Weight 16 - @13, ashy, azb
. Weight 32 - azbs asbs
« weight 64 - azbz
2. Reduction layer 1:
« Pass the only weight-1 wire through, output: 1 weight-1 wire

« Add a half adder for weight 2, outputs: 1 weight-2 wire, 1

weight-4 wire

« Add a full adder for weight 4, outputs: 1 weight-4 wire, 1

weight-8 wire

« Add a full adder for weight 8, and pass the remaining wire
through, outputs: 2 weight-8 wires, 1 weight-16 wire

« Add a full adder for weight 16, outputs: 1 weight-16 wire, 1
weight-32 wire
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« Add a half adder for weight 32, outputs: 1 weight-32 wire, 1

weight-64 wire

« Pass the only weight-64 wire through, output: 1 weight-64 wire
3. Wires at the output of reduction layer 1:

. weightl-1

. weight2-1

o weight4-2

« weight8-3

« weight16 -2

o weight32-2

o weight64 -2
4. Reduction layer 2:

« Add a full adder for weight 8, and half adders for weights 4, 16,
32,64

5. Outputs:
o weightl-1
o weight2-1
« weight4-1
o weight8-2

e Weight 16 -2
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o weight32-2
« weight64 -2
. weight128 -1

6. Group the wires into a pair integers and an adder to add them

L

n///d////

4-hit Adder

YYYYY

Wallace Multiplier Intermediate Stage
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Karatsuba Multiplier

The Karatsuba algorithm is a fast multiplication algorithm. It was discovered
by Anatolii Alexeevitch Karatsuba in 1960 and published in 1962. It reduces

the multiplication of two n-digit numbers to at most n'*%23 a2 n "%

single-
digit multiplications in general (and exactly n'°®2% when n is a power of 2).
It is therefore faster than the classical multiplication algorithm, which

requires n’ single-digit products.

For example, the Karatsuba algorithm requires 3'° = 59,049 single-digit
multiplications to multiply two 1024-digit numbers (n= 1024 = 2'9),

whereas the classical algorithm requires (2'°)% = 1,048,576.

The Karatsuba algorithm was the first multiplication algorithm
asymptotically faster than the quadratic "grade school” algorithm.
The Toom-Cook algorithm is a faster generalization of Karatsuba's method,

and the Schonhage—Strassen algorithm is even faster, for sufficiently large n.

Basic steps of algorithm

The basic step of Karatsuba's algorithm is a formula that allows us to
compute the product of two large numbers x and ¥ using three
multiplications of smaller numbers, each with about half as many digits as

or ¥, plus some additions and digit shifts.

Let x and ¥ be represented as n-digit strings in some base B. For any

positive integer m less than n, one can write the two given numbers as

x=x,:B™ + 19
y =1 B™ + o,
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where To and Yo are less than B™. The product is then

xy = (21B™ + x0) (11 B™ + o)
1y = B + B + z

where

Z0 = Il

Z1 = T1Yo + Tolh
Zp = TolYo

These formulae require four multiplications, and were known to Charles
Babbage. Karatsuba observed that *¥ can be computed in only three
multiplications, at the cost of a few extra additions. With Zo and 2z as before

we can calculate
Z = (Il + Iﬂ)(lﬁ +yﬂ) — 2y — 2
which holds since

1 = T1Yo + Tolh

21 = (1 + 20) (Y1 + Yo) — T1Y1 — ToYo

A more efficient implementation of Karatsuba multiplication can be set as
vy = (b* + b)z1ys — b(x1 — z0)(y1 — yo) + (b+ 1)zoyo,

where b is the power where the split occurs of *1.
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Example

To compute the product of 12345 and 6789, choose B = 10 and m = 3. Then

we decompose the input operands using the resulting base (B™ = 1000), as:
12345 =12 - 1000 + 345
6789 =6 - 1000 + 789

Only three multiplications, which operate on smaller integers, are used to

compute three partial results:
2,=12%x6=72
Zo = 345 x 789 = 272205

21 = (12 + 345) x (6 + 789) — 2, — 2o = 357 x 795 — 72 — 272205 = 283815 —
72 — 272205 = 11538

We get the result by just adding these three partial results, shifted
accordingly (and then taking carries into account by decomposing these

three inputs in base 1000 like for the input operands):
result =z, - B +z;, - B" + 2, i.€.
result = 72 - 10007 + 11538 - 1000 + 272205 = 83810205.

Note that the intermediate third multiplication operates on an input domain
which is less than twice larger than for the two first multiplications, its
output domain is less than four times larger, and base-1000 carries computed
from the first two multiplications must be taken into account when
computing these two subtractions; but note also that this partial

result z; cannot be negative: to compute these subtractions, equivalent
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additions using complements to 1000° can also be used, keeping only the

two least significant base-1000digits for each number:

zy= 283815 — 72 — 272205 = (283815 + 999928 + 727795) mod 1000” =
2011538 mod 10007 = 11538.
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VHDL CODES FOR MULTIPLIER

WALLACE TREE MULTIPLIER

MAIN MULTIPLIER

library ieee;

use ieee.std_logic_1164.all;

entity treeWallace is
Port (A,B:in STD_LOGIC_VECTOR (3 downto 0);
PROD : out STD LOGIC VECTOR (7 downto 0));

end treeWallace;

architecture multiplier of treeWallace is
--component Half Adder for instances where two partial products are to be
added
component WFULLADD is
Port( a, b, cin:in STD_LOGIC;
sum, carry : out STD_LOGIC);

end component;

--component Full Adder for instances where more than two partial products
are to be added

component WHALFADD is
44




Port(a, b: in STD_LOGIC;
sum, carry : out STD_LOGIC);

end component;

signal s11,512,513,s14,515,522,523,524,525,526,532,534,535,536,537
STD_LOGIC;

signal  ¢11,c12,c13,c14,c15,c22,c23,c24,c25,c26,c32,c34,¢35,c36,c37
STD_LOGIC;

signal p0,p1,p2,p3 : STD_LOGIC_VECTOR(3 downto 0);

begin

process(A,B)

begin

--partial products generation stage
--here each bit of each binary multiplicand is multiplied by the other
--thus we have n® bits

foriin 0 to 3 loop

pO(i)<=A(i) and B(0);
pl(i)<=A(i) and B(1);
p2(i)<=A(i) and B(2);
p3(i)<=A(i) and B(3);

end loop;

end process;
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--first partial products reduction stage

hall : WHALFADD port map(p0(1),p1(0),s11,c11);

fal2 : WFULLADD port map(p0(2),p1(1),p2(0),s12,c12);
fal3 : WFULLADD port map(p0(3),p1(2),p2(1),s13,c13);
fald : WFULLADD port map(p1(3),p2(2),p3(1),s14,c14);
hal5 : WHALFADD port map(p2(3),p3(2),s15,c15);

--second partial products reduction stage

ha22 : WHALFADD port map(cl11,512,522,c22);

fa23 : WFULLADD port map(p3(0),c12,513,523,c23);
fa24 : WFULLADD port map(c13,c32,514,524,c24);
fa25 : WFULLADD port map(c14,c24,5s15,525,c25);
fa26 : WFULLADD port map(c15,c25,p3(3),526,c26);

--third partial products reduction stage

ha32 : WHALFADD port map(c22,523,532,c32);
ha34 : WHALFADD port map(c23,524,534,c34);
ha35 : WHALFADD port map(c34,s25,535,¢35);
ha36 : WHALFADD port map(c35,526,536,c36);
ha37 : WHALFADD port map(c36,c26,s37,c37);

---final mapping
PROD(0)<=p0(0);
PROD(1)<=s11;
PROD(2)<=s22;
PROD(3)<=s32;
PROD(4)<=s34;

PROD(5)<=535;
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PROD(6)<=s36;
PROD(7)<=s37,;

end multiplier;

FULL ADDER

library ieee;

use ieee.std_logic_1164.all;

entity WFULLADD is

port(a,b,cin: in STD_LOGIC;
sum,carry: out STD_LOGIC);

end WFULLADD;

architecture fulladd of WFULLADD is

begin

sum <= (a AND b) OR (b AND cin) OR (a AND cin);
carry <=a XOR b XOR cin;

end fulladd;
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HALF ADDER

library ieee;

use ieee.std logic_1164.all;
entity WHALFADD is
port(a,b: in STD_LOGIC;
sum,carry: out STD_LOGIC);
end WHALFADD,;
architecture halfadd of WHALFADD is

begin

sum <= a XOR b;
carry <=a AND b;

end halfadd;
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KARATSUBA TREE MULTIPLIER

MAIN MULTIPLIER

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity karatsuba_multiplier_even is

port (
a, b: in std_logic_vector(7 downto 0);
d: out std_logic_vector(15 downto 0)
);

end karatsuba_multiplier_even;

architecture simple of karatsuba_multiplier_even is

component Multiplier VHDL is
port

(
Nibblel, Nibble2: in std_logic_vector(3 downto 0);

Result: out std_logic_vector(7 downto 0)
)i
end component;
49




component Multiplier VHDL1 is
port

(
Nibblel, Nibble2: in std_logic_vector(4 downto 0);

Result: out std_logic_vector(9 downto 0)

);

end component;

component testl is
port(a,b:in std_logic_vector(3 downto 0);
s:out std_logic_vector(4 downto 0)
)i

end component;

component subtr is
port(A,B : in std_logic_vector(9 downto 0);
RES : out std_logic_vector(9 downto 0));

end component;

component adrl6 is
port(A,B : in std_logic_vector(15 downto 0);
RES : out std_logic_vector(15 downto 0));

end component;

signal x0y0,x1y1: std_logic_vector(7 downto 0);

signal x01yO01: std_logic_vector(9 downto 0);
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signal x0_p_X1,y0 p y1:std_logic_vector(4 downto 0);
signal x0y0a, x1yla, resl, res2: std_logic_vector(9 downto 0);

signal h, 1, |, res3, res4: std_logic_vector(15 downto 0):=(others=>'0");

begin

multl: Multiplier VHDL
port map(a(3 downto 0), b(3 downto 0), x0y0);

mult2: Multiplier VHDL
port map(a(7 downto 4), b(7 downto 4), x1y1);

mult3: Multiplier VHDL1
port map(x0_p X1, y0 p _vyi, x01y01);

addl: testl

port map(a(7 downto 4),a(3 downto 0), x0_p_X1);
add2: testl

port map(b(7 downto 4),b(3 downto 0), y0_p_y1);

x1lyla <="00"&x1yl;
x0y0a <= "00"&x0y0;

subl: subtr

port map(x01y01,x1yla,resl);
sub2: subtr

port map(res1,x0y0a,res2);
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h(15 downto 8) <= x1y1;
1(13 downto 4) <= res2;
I(7 downto 0) <= x0y0;

adrl6a: adrl6
port map(h, i, res3);
adrl6b: adrl6

port map(res3, I, res4);

d <=res4;

end simple

4-BIT RIPPLE CARRY ADDER

library ieee;
use ieee.std _logic_1164.all;
entity rca4 is
port(a,b:in std_logic_vector(3 downto 0);
cin:in std_logic;
s:out std_logic_vector(3 downto 0);
cout:out std_logic);

end rca4;

architecture struct of rca4 is
signal c1,c2,c3:std_logic;

component full is
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port(a,b,cin:in std_logic;
s,cout:out std_logic);

end component;

begin
fal:full port map(a(0),b(0),cin,s(0),cl);
fa2:full port map(a(1),b(1),c1,s(1),c2);
fa3:full port map(a(2),b(2),c2,s(2),c3);
fa4:full port map(a(3),b(3),c3,s(3),cout);

end struct;

COMPONENT FOR CONCATENATING CARRIES

library ieee;
use ieee.std_logic_1164.all;
entity testl is
port (a,b:in std_logic_vector(3 downto 0);
s:out std_logic_vector(4 downto 0);
end testl;

architecture struct of testl is
signal c1:std_logic_vector(3 downto 0);
signal c2:std_logic;
component rca4 is
port(a,b: in std_logic_vector(3 downto 0);
cin: in std_logic;
s: out std_logic_vector(3 downto 0);
cout: out std_logic);

end component;
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begin
rcal: rca4 port map(a,b,'0',c1,c2);
S <= c2&cl;

end struct;

4-BIT MULTIPIERS

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.NUMERIC STD.ALL;

entity Multiplier VHDL is
port

(
Nibblel, Nibble2: in std_logic_vector(3 downto 0);

Result: out std_logic_vector(7 downto 0)
)i

end entity Multiplier VHDL,;

architecture Behavioral of Multiplier VHDL is
begin

Result <= std_logic_vector(unsigned(Nibblel) * unsigned(Nibble2));

end architecture Behavioral;
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5-BIT MULTIPLIER

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.NUMERIC STD.ALL;

entity Multiplier VHDL1 is
port

(
Nibblel, Nibble2: in std_logic_vector(4 downto 0);
Result: out std_logic_vector(9 downto 0)

)i

end entity Multiplier VHDLZ;

architecture Behavioral of Multiplier VHDLL1 is
begin

Result <= std_logic_vector(unsigned(Nibblel) * unsigned(Nibble2));

end architecture Behavioral;
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FULL ADDER

library ieee;
use ieee.std_logic_1164.all;
entity full is
port(a,b,cin:in std_logic;
s,cout:out std_logic);
end full;

architecture FA of full is
begin
s<=a xor b xor cin;
cout<=(a and b)or(a and cin)or(b and cin) ;
end FA,

16-BIT ADDER

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity adrl6 is

port(A,B : instd_logic_vector(15 downto 0);

RES : out std_logic_vector(15 downto 0));

end adrl6;
architecture archi of adrl6 is

begin

RES <= A + B;

end archi;
56




10-BIT SUBTRACTOR

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity subtr is

port(A,B : in std_logic_vector(9 downto 0);

RES : out std_logic_vector(9 downto 0));

end subtr;
architecture archi of subtr is

begin

RES <= A -B;

end archi:
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APPLICATIONS

The potential usages of proposed design are -

* High Speed Signal Processing that includes DSP based applications.

* DWT and DCT transforms used for image and wide signal processing.
* FIR and IIR Filters for high speed, low power filtering applications.

* Multirate signal processing applications such as digital down converters

and up converters.

Computers are extremely capable in two broad areas: (1) data manipulation,
such as word processing and database management, and (2) mathematical
calculation, used in science, engineering, and Digital Signal Processing.
However, most computers are not optimized to perform both functions. In
computing applications such as word processing, data must be stored, sorted,
compared, moved, etc., and the time to execute a particular instruction is not
critical, as long as the program’s overall response time to various commands
and operations is adequate enough to satisfy the end user. Occasionally,
mathematical operations may also be performed, as in a spreadsheet or
database program, but speed of execution is generally not the governing
factor. In most general purpose computing applications there is no
concentrated attempt by software companies to make the code efficient.
Application programs are loaded with “features” which require more

memory and faster processors with every new release or upgrade.
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On the other hand, digital signal processing applications require that
mathematical operations be performed quickly, and the time to execute a
given instruction must be known precisely, and it must be predictable. Both
code and hardware must be extremely efficient to accomplish this. As has
been shown in the last two sections of this book, the most fundamental
mathematical operation or kernel in all of DSP is the sum-of-products (or
dot-product). Fast execution of the dot product is critical to fast Fourier
transforms (FFTs), real time digital filters, matrix multiplications, graphics

pixel manipulation, etc.

Multiplication is an important fundamental function in arithmetic operations.
Multiplication-based operations such as Multiply and Accumulate(MAC)
and inner product are among some of the frequently used computation
Intensive Arithmetic Functions(CIAF) currently implemented in many
Digital Signal Processing (DSP) applications such as convolution, Fast
Fourier Transform(FFT), filtering and in microprocessors m its arithmetic
and logic unit. Since multiplication dominates the execution tune of most
DSP algorithms, so there is a need of high speed multiplier. Currently,
multiplication time is still the dominant factor in determining the instruction
cycle time of a DSP chip. The demand for high speed processing has been
increasing as a result of expanding computer and signal processing
applications. Higher throughput arithmetic operations are important to
achieve the desired performance in many real-time signal and image

processing applications.
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